Public transit planning and scheduling based on AVL data in China

Happy Chinese New Year

Prof. Yindong Shen

Huazhong University of Science and Technology Email: yindong@hust.edu.cn

Global Scheduling Seminar on Zoom on Wednesday February 2, 2022

OUTLINE

2

China

- Population:
 1.328 billion by the end of 2008
- Area:
 - 9.6 million km^2
- Provinces (23) & autonomous regions (5+2) & Municipality (4): 34
- Capital: Beijing

Severe challenges to urban transportation

How to achieve it?

Components of successful transit system

Ceder A (2007). Public transit planning and operation: theory, modeling and practice. Elsevier, Butterworth-Heinemann

Public transit operation planning process

Gap between route design and operation

Why ?

Dispatching is generally paid more attention than **scheduling** in China

Misunderstanding the public transport planning as network route design.

Scheduling is often confused with dispatching. The schedule compilation is generally underrated, but
dispatching, by contrast, plays a much more important role in bus operation.

8

9

Pay more attention on dispatching

- Each terminus is usually equipped with at least a dispatcher, who plays part of the roles of schedulers by deciding the departure time of each service trip according to experiences.
- The efficiency of dispatching depends greatly on the experience, responsibility and personal authority over drivers of an individual dispatcher.

Line-by-Line Mode

The scheduling approaches successful in developed countries cannot be directly applied in China due to some Chinese specific rules. The practical scheduling approach or system is missing.

The service planning and scheduling are missing, or carried out roughly and arbitrarily Lack of data or parameters has acted as a disincentive to the widespread use of scheduling systems.

Our major efforts

How to fulfil them?

Shortcut to achieve the goal

Projects on public transit planning

yindong@hust.edu.cn

Some projects

Shiyan

Population:

Bridge between route design and operation

Structure design

 Set up a comprehensive framework of transit operation planning

17

• **Dispatching** is generally paid more attention than **scheduling** is in China

Our proposed comprehensive framework

The comprehensive framework of public transit planning in China encompasses all the contents in the public transit planning.

A general framework of IPTS plan of Haikou

Bridge between route design and operation

Global Scheduling Seminar on Zoom on Wednesday February 2, 2022

An Integrated Solution for Public Transport Scheduling

SCHEDULING

- Vehicle scheduling
- Crew scheduling
- Crew rostering

DATA ANALYSIS

- Running Time Analysis
- Ridership Analysis
- Timetable Development
- o Comparison of Schedules

ERP

- Infrastructure and Equipment Management
- Operations and Safety Management
- Logistics and Maintenance Management
- Party Affairs and Administration
- Financial Management

GOVERNMENT SERVICE

- Subsidies Accounting
- Service Policy Setting

INTEGRATED TOOLS

- Interfaces
- External Systems

RELATED SERVICES

- Network Route Planning
- Feasibility Consultation

iPTS

Case Study: in Beijing Bus Group(BJBUS)

Case Study: in Beijing Bus Group(BJBUS)

Items	Manual Schedule	iPTS System	PRD
Num of Trips	1971	1971	0
Num of Buses	116	105	9.5%
Ratio (%)	16.99 trips/bus	18.77 trips/bus	10.4%
Num of Crews	182	166	8.8%

- The iPTS system produced a better solution by saving 11 from 116 buses and 16 from 182 crews.
- The computational time was very short (the elapsed time less than 4 minutes on a Pentium III 1gHz PC).
- The schedules generated have meet all the requirements, especially the particular ones of BJBUS.

AWARDS

International Federation of Operational Research Societies (IFORS) "IFORS Prize for Operational Research in Development ", Runner-up

Case Study: in Xiaogan Bus Group

Headways in Wangyao Terminal (Ori)

Headways in Wangyao Terminal (Ori)

Global Scheduling Seminar on Zoom on Wednesday February 2, 2022 24

Case Study: in Jingmen – timetable

A complicated bus route (108) with several short lines

Headway optimization

meet passenger demands

& even headways

То

Fig. 1 Headways in 108 (NY-DS) in the manual schedule

Fig. 2 Optimized headways in 108 (NY-DS)

A vehicle schedule

A driver schedule

广州108线驾驶员调度平日劳动配班方案

alcoco —																
#局10 🛑	本方案班	次数:65						编制人:	hqGuest					编制日期: 2	2021-11-08 14	4:51:32.0
<u></u> 5511 - 11 - 11 - 11 - 11 - 11 - 11 - 11	车位	班次序号	签到时间	Retia	出发	Rtia	到达	签出时间	停车用餐	分段有效	分段工时	总跨度	总有效工	总工时	班次类型	签到地
5512 💼	1	20	04:54	05:09	机场路场	11:19	南悦花苑总		00:22	05:42	06:10		CH			
喪13 ── 喪14 ──		20		11:41	南悦花苑总	15:00	越秀公园	15:00		03:09	03:19	10:06	08:51	10:06	整班 (早)	机场路场
<u></u> 誤15 一		21	15:00	15:00	越秀公园	19:07	南悦花苑总		00:16	03:56	04:07					
55016 1711		21		19:23	南悦花苑总 站	23:30	机场路场	23:45		03:54	04:07	08:45	07:50	08:45	整班 (晚)	机场路场
5 518	2	22	05:35	05:50	南悦花苑总 站场	12:01	东山总站		00:17	05:49	06:11					
史员19 🚃 史员20 🚃		22		12:18	东山总站	14:21	越秀公园	14:21		01:57	02:03	08:46	07:46	08:46	整班 (早)	南悦花苑总 站场
t E 21		23	14:21	14:21	越秀公园	19:46	东山总站		00:20	04:50	05:25					
史员21		23		20:06	东山总站	23:38	南悦花苑总 站场	23:53		03:19	03:32	09:32	08:09	09:32	整班 (晚)	南悦花苑总 站场
史员23 🚃	3	24	05:40	05:55	南悦花苑总 站场	12:25	东山总站		00:17	06:03	06:30					
史员24 中员25		24		12:42	东山总站	13:51	南悦花苑总 站	13:51		01:09	01:09	08:11	07:12	08:11	整班 (早)	南悦花苑总 站场
		25	13:56	13:56	南悦花苑总 站	20:15	南悦花苑总 站		00:20	06:02	06:19					
		25		20:35	南悦花苑总	22:56	南悦花苑总	23:11		02:13	02:21	09:15	08:15	09:15	整班 (晚)	南悦花苑总

- Each sub-problem in the 'bridge' is individually hard,
- it is infeasible to develop a global solution approach.
- A simple but applicable bridge is more acceptable in China.

Dispatching is generally paid more attention than **scheduling** is in China

Global Scheduling Seminar on Zoom on Wednesday February 2, 2022

Global Scheduling Seminar on Zoom on Wednesday February 2, 2022

Vehicle Scheduling Problem (VSP)

- Vehicle Scheduling Problem (VSP) is concerned with the allocation of a set of trips in a predetermined timetable to a fleet of vehicles, in such a way that
 - the total number of vehicles and operating cost are minimized .
- An efficient schedule can bring transit operators a considerable saving on property and operating cost.
- Each trip contains a start time at its departure point and an end time at its arrival point.
 9:00
 9:40

Α

B

The network flow representation of VSP

The VSP can be represented as a network flow

Each trip is represented as a departure node and an arrival node, connected by a trip arc:

Global Scheduling Seminar on Zoom on Wednesday February 2, 2022

The objectives of VSP

1. To minimize the fleet size

uazhong University Of Science & Technology

2. To minimize the total operating cost

Formulations of traditional VSPs

★ Let *P* denotes the set of pull-out arcs, *Q* denotes the set of pull-out arcs, *R* denotes the set of trip-link arcs, *A* = *P* ∪ *Q* ∪ *R* denotes the set of all arcs

3)

(5)

Given a depot *d* and a set of trips *T*,
 the VSP with single depot can be modelled as follows.

$$\min \sum_{(i,j)\in A} c_{ij} x_{ij} \qquad (i)$$

$$\forall t. \sum_{i:(i,j)\in A} x_{ij} - \sum_{i:(j,i)\in A} x_{ji} = 0, \quad \forall j \in T \qquad (i)$$

$$\sum_{j:(d,j)\in P} x_{dj} - \sum_{i:(i,d)\in Q} x_{id} = 0 \qquad (i)$$

$$\sum_{i:(i,i)\in A} x_{ij} = 1, \quad \forall j \in T \qquad (i)$$

$$x_{ii} \in \{0,1\}, \quad \forall (i,i) \in A$$

 $\min \sum_{d \in D} \sum_{(i,j) \in A^d} c_{ij}^d \cdot x_{ij}^d$ (1) $st. \sum_{i:(i,j) \in A^d} x_{ij} \cdot \sum_{i:(j,i) \in A^d} x_{ji} = 0, \quad \forall j \in T, \forall d \in D$ (2) $\sum_{j:(d,j) \in P} x_{dj} \cdot \sum_{i:(i,d) \in Q} x_{id} = 0, \quad \forall d \in D$ (3) $\sum_{d \in D} \sum_{i:(i,j) \in A^d} x_{ij} = 1, \quad \forall j \in T$ (4) $x_{ij} \in \{0,1\}, \quad \forall (i,j) \in A$ (5)

VSP based on fixed trip times

* Each trip in the timetable has

- a fixed departure time
- a fixed trip time –
 called scheduled trip time (ST)

Global Scheduling Seminar on Zoom on Wednesday February 2, 2022

Variation of trip times

- The travel time at each route segment usually varies dramatically in different (e.g. peak- or off-peak) periods through a day due to fickle traffic, uncertain passenger demands and vehicle malfunction, etc.
- It is well known that the travel time is hard to be precisely measured and predicted (Chakroborty and Kikuchi, 2004; Vu and Khan, 2010; Ng et al., 2011).

Trip times abstracted from the AVL data of Bus Line 4 in the city of Haikou (11585 samples)

Two main problems raised in the traditional VSP

Due to trips times vary dramatically during a day, therefore,
 based on fixed scheduled trip times (STs),

To increase the on-time performance of a schedule, the common practice is to increase the scheduled trip times(STs).

Global Scheduling Seminar on Zoom on Wednesday February 2, 2022

The influnece of increasing STs

With enlarged scheduled trip times, the on-time performance of the resulting schedule will increase.

STs affect service reliability

On-time performance

- Longer STs: high cost
- Shorter STs: low on-time performance

Therefore, it is non-trivial to set suitable scheduled trip times.

* Vehicle scheduling approaches based on AVL data, which aim to

- increase the on-time performance of compiled schedules
- reduce the pressure of human schedulers

華中科技大學 Huazhong University Of Science & Technology

Global Scheduling Seminar on Zoom on Wednesday February 2, 2022 41

The approach is composed of the following steps:

To set more accurate STs automatically

Vehicle scheduling with stochastic trip times

Handling AVL data, partitioning service span into HRT periods based on observed travel times

7 HRT bands/periods

Empirical distributions of HKB4 (outbound)

The trip time distribution for each HRT period is abstracted based on the AVL data

Empirical distributions of HKB4 (inbound)

Giobal Scheduling Seminal on 20011 on wednesday replicatly 2, 2022

Demonstrate the fitting of the distribution models to the empirical distributions

It can be seen that the Burr distribution can match better the data

Global Scheduling Seminar on Zoom on Wednesday February 2, 2022

A compound travel time model

Data from Bus Line 4 in Haikou

	UDT	长大粉		AIC 措	旨数		最优分布
	HKI	什个奴	正态	Lognormal	Gamma	Bur	模型
23	AM early	357	1922.3	1929.9	1926.5	1924.6	Normal
	AM peak	1019	5729.2	5652.7	5677.2	5523.4	Burr
上行	Day	1367	8020.1	7964.5	7980.4	7989.7	Lognormal
	PM peak	332	1864.5	1873.4	1870.1	1863.1	Burr
11	Eve	620	3576.8	3554.9	3560.9	3556.0	Lognormal
	Eve peak	235	1337.6	1339.8	1338.7	1344.5	Normal
-	Night	244	1538.0	1543.7	1541.1	1540.9	Normal
	AM early	86	495.7	479.9	492.1	474.7	Burr
	AM peak	239	1450.5	1440.6	1443.8	1430.6	Burr
下	Day	2090	13485.5	13269.1	13335.8	13071.4	Burr
行	PM peak	338	2162.6	2136.6	2144.6	2123.8	Burr
	Eve	857	5638.4	5536.4	8499.6	5431.6	Burr
	Night	385	2413.0	2368.7	2381.8	2350.3	Burr

Shen Yindong, Xu Jia, Wu Xianyi, Ni Yudong. Modelling travel time distributions using distribution fitting methods and its influence over stochastic vehicle scheduling. *Transport*, 2019, 34(2): 237-249.

Stochastic Vehicle scheduling

 To incorporate the stochastic trip times in the VSP model (in the light of AVL data)

Compile a schedule based on stochastic trip times

Diverting from the traditional vehicle scheduling,

Compatibility of a pair of trips

Compatibility and incompatibility probability

- ★ Between the trips *i* and *j*, an arc (*i*, *j*) is defined if $P{i \Theta j} > 0$; otherwise, no arc exists.
- * Each arc (i, j) is also associated with an incompatibility probability $P\{i \ \overline{\Theta} \ j\} = 1 - P\{i \ \Theta \ j\}$

where, $i \overline{\Theta} j$ denotes the incompatibility of trips *i* and *j*.

A probabilistic model for VSP (PVSP)

$$\begin{array}{c|c}
\min \sum_{(d,j)\in P} C_{veh} x_{dj} + \sum_{(i,j)\in A} C_{ij} x_{ij} + \alpha \cdot \sum_{(i,j)\in R} P_{ij} x_{ij} \quad (1) \\
\hline \mathbf{s.t.} \sum_{i:(i,j)\in A} x_{ij} - \sum_{i:(j,i)\in A} x_{ji} = 0, \quad \forall j \in T \quad (2) \\
\sum_{j:(d,j)\in P} x_{dj} - \sum_{i:(i,d)\in Q} x_{id} = 0, \quad \forall d \in D \quad (3) \\
\sum_{i:(i,j)\in A} x_{ij} = 1, \quad \forall j \in T \quad (4) \\
x_{ij} \in \{0,1\}, \quad \forall (i,j) \in A \quad (5)
\end{array}$$

* The cost and penalty for the trip-link arcs:

• Cost (deadhead & idle time)

$$C_{ij} = DH_{ij} + E(ID_{ij}) = DH_{ij} + \int_0^{T_j^S - T_i^S - DH_{ij}} (T_j^S - T_i^S - t - DH_{ij}) f_i(t) dt$$

Penalty (infeasible time --- When the trips *i* and *j* are incompatible, $IF_{ij} \ge 0$; otherwise, let $IF_{ij} = 0$.)

$$P_{ij} = E(IF_{ij}^2) = \int_{T_j^s - T_i^s - DH_{ij}}^{+\infty} (T_i^s + t - T_j^s + DH_{ij})^2 f_i(t) dt$$

Enhancement of PVSP considering delay propagation

- In practice, the delay can propagate between the consecutive trips operated by the same vehicle.
- Such delay propagation can cause more delays to the pre-compiled schedule.
- Considering delay propagation between two trips *i* and *j*:
 - The departure time of trip *j* is no-longer deterministic and depends on the compatible probability of trips *i* and *j*.
 - When the trips *i* and *j* are compatible, trip *j* can either depart on-time, or, experience a departure delay.
 - The arrival time of trip *j* is affected by both its departure time and its trip time.

An enhanced probabilistic model for VSP (PVSP-DP)

 Formulate the probabilistic model of VSP with delay propagation (PVSP-DP)

1. The expected idle time $E(ID_{ij})$ in the cost of a trip-link arc, is expressed as:

$$E(ID_{ij}) = \int_0^{T_j^s - DH_{ij}} (T_j^s - t_i^e - DH_{ij}) f_i^e(t) dt$$
(1)

2. The penalty of trip-link arc, is expressed as:

$$E(DD_{ij}^{2}) = \int_{T_{j}^{s} - DH_{ij}}^{+\infty} (t_{i}^{e} - T_{j}^{s} + DH_{ij})^{2} f_{i}^{e}(t) dt$$
(2)

3. The other parts of the model remains unchanged.

A heuristic approach for the PVSP-DP model

***** Stage 1: Matching based heuristic to form an initial schedule:

- (1) The tier partitioning is to partition all the trips into different tiers;
- (2) Link all the tiers into a initial schedule by solving a sequence of matching problem.
- Stage 2: Refinement. The iterative greedy local search method is to firstly break part of the arcs in the current schedule, and then to re-link the nodes by solving the sub-problem containing a small subset of nodes.

Benchmark schedules with DVSP model

Compile benchmark schedules with DVSP model:

- To rules-of-thumb for setting the scheduled trip times are adopted: the 85th percentile of trip time; the sum of mean and standard deviation of trip time.
- Adjust by +/- 1 minute based on the two rules-of-thumb, 6 groups of scheduled trip times forms 6 problems of vehicle scheduling. Solved by CPLEX, 6 vehicle schedules are produced.
- From the results, along the increment of ST, the operating cost of schedule is increased, while the penalty is decreased(better on-time performance), however, the fleet size is greatly influenced by the ST.
- The best benchmark schedule is selected with respect to the best on-time performance of 28 vehicles

Problem	ST setting method	ST adjustment	Fleet size	Trip time	E(ID)	Deadhe ad	Operating cost	Penalty	Objective value
T1	Rule-of-	-1	27	22816	2313	1980	4293	9577	45659
T2	thumb 1	0	28	23270	2698	2040	4738	6713	42807
Т3		1	29	23724	3372	2100	5472	3497	39718
T4	Rule-of-	-1	28	23290	2762	2100	4862	5637	41317
T5#	thumb 2	0	<u>28</u>	<u>23744</u>	<u>3315</u>	<u>2040</u>	<u>5355</u>	<u>3627</u>	<u>38796</u>
Т6		1	29	24198	3611	2250	5861	2769	39015
H	azhong University Of Science & Tech	analogy							

Schedules compiled with PVSP model

Schedules produced by PVSP model:

Schedules produced by the PVSP-DP model

Solution with PVSP-DP model:

		Fleet size Cost						Per	nalty		Objective value				
Index	α	PVSP ^{PV} -D	SP P PVSP	RPD	PVSP -DP	RPD	PVSP	RPD	PVSP -DP	RPD	PVSP	RPD	PVSP -DP	RPD	
R1	0.2	27 2	7 5618	4.91%	5670	5.88%	5997	65.34%	5857	61.48%	41614	7.26%	41456	6.86%	
R2	0.3	28 2	8 5314	-0.77%	5373	0.34%	3641	0.37%	3507	-3.31%	38775	-0.05%	38634	-0.42%	
R3	0.4	28 2	8 5323	-0.60%	5385	0.56%	3614	-0.37%	3474	-4.23%	38744	-0.13%	38596	-0.52%	
R4	0.5	7000 _[6		T:		Г			NAS - 10 10 10.	%	
R5	0.6	6500	. Q									- DVSP(T - PVSP(F	2,4,5) 2-₽14)	%	
R6	0.7	8000	\sim									- PVSP-D)P(R2-R1	4) %	
R7	0.8	0000		5							0	Non-dor	ninated	%	
R8	0.9	5500 -	2		5									- %	
R9	1	<u> </u>	ā.			_								- %	
R10	1.1	а 4500	3											%	
R11	1.2	4000												%	
R12	1.3	4000	-		a	•								7 %	
R13	1.4	3500	3		8		- B A C	x						- %	
R14	1.5	3000	-				- 06		0-0	-000 -				- %	
R15	1.6	2500	22	<u> </u>		f		I	200			₩ ₩		%	
Avg.	中和		0	5200		5400)	5600 Cost		5800		6000		6200 <u>%</u>	

Conclusions

- Experimental results show that both of the probabilistic models can produce the schedules with the same fleet size but considerably higher on-time performance than the best known schedule generated under DVSP model.
- (2) Comparing the two probabilistic models, the PVSP-DP model may further increase the on-time performance, while the fleet size remains the same but with a little compromise in the operating cost.
- (3) Moreover, with the aid of the probabilistic models, human schedulers can be saved from the work of determining scheduled trip times, which is non-trivial and often frustrates schedulers.

Shen Y, Xu J, Li J. A probabilistic model for vehicle scheduling based on stochastic trip times. *Transportation Research Part B*, 2016, 85(1): 19-31.

Thank You!

Questions?

