Happy Chinese New Year

Public transit planning and scheduling based on AVL data in China

Prof. Yindong Shen
Huazhong University of Science and Fechnology
Email: yindong@hust.edu.cn

Global Scheduling Seminar on Zoom on Wednesday February 2, 2022

OUTLINE

Background－Public transport in China

Major Problems related to transit planning

Comprehensive framework of transit planning

An integrated solution for public transport scheduling（iPTS）

Vehicle scheduling based on AVL data

China

Severe challenges to urban transportation

Components of successful transit system

Ceder A（2007）．Public transit planning and operation：theory，modeling and practice．Elsevier，Butterworth－Heinemann

率怍科技大梁
Huazhong University Of Science \＆Technology

Public transit operation planning process

Huazhong University of Science \& Technology

Gap between route design and operation

Network Route designing

On-site operation, incl. dispatching, running

Major Problems related to transit planning

Misunderstanding the public transport planning as network route design.
-The schedule compilation is generally underrated, but - dispatching, by contrast, plays a much more important role in bus operation.

Pay more attention on dispatching

Each terminus is usually equipped with at least a dispatcher, who plays part of the roles of schedulers by deciding the departure time of each service trip according to experiences.

The efficiency of dispatching depends greatly on the experience, responsibility and personal authority over drivers of an individual dispatcher.

Line-by-Line Mode

Major Problems related to transit planning

Line-by-Line Mode

Global Scheduling Seminar on Zoom on Wednesday February 2, 2022

Major Problems related to transit planning

Major Problems related to transit planning

Our major efforts

Shortcut to achieve the goal

To achieve the goal

First of all we should let transit authority and operators
have a comprehensive understanding of public transit operation planning．

We believe

being involved in traditional transit planning projects would be a shortcut．

Projects on public transit planning

Some projects

$24,000 \mathrm{~km}^{2}$ - 42 bus routes 859 buses

Jingmen

Population: 3 millions
Area: $12,404 \mathrm{~km}^{2}$

* 21 bus routes

347 buses

Bridge between route design and operation

Structure design

Set up a comprehensive framework of transit operation planning

Our proposed comprehensive framework

Long term planning

Medium term planning

Investigation，analysis and forecast on service demand

The comprehensive framework of public transit planning in China encompasses all the contents in the public transit planning．

A general framework of IPTS plan of Haikou

Bridge between route design and operation

Structure design

－Set up a comprehensive framework of transit operation planning， in which，
＊IPTS plans were successfully accepted in China．

Technical design

Global Scheduling Seminar on Zoom on Wednesday February 2， 2022

An Integrated Solution for Public Transport Scheduling

SCHEDULING

© Vehicle scheduling

- Crew scheduling
- Crew rostering

DATA ANALYSIS

© Running Time Analysis

- Ridership Analysis
- Timetable Development
- Comparison of Schedules

ERP

- Infrastructure and Equipment Management
- Operations and Safety Management
- Logistics and Maintenance Management
- Party Affairs and Administration
© Financial Management

GOVERNMENT SERVICE

- Subsidies Accounting
- Service Policy Setting

INTEGRATED TOOLS

© Interfaces

- External Systems

RELATED SERVICES

- Network Route Planning
- Feasibility Consultation

Case Study：in Beijing Bus Group（BJBUS）

Inter－line Operation Mode

区域运营组织示范工程

Case Study: in Beijing Bus Group(BJBUS)

Items	Manual Schedule	iPTS System	PRD
Num of Trips	1971	1971	0
Num of Buses	116	105	9.5%
Ratio (\%)	16.99 trips/bus	18.77 trips/bus	10.4%
Num of Crews	182	166	8.8%

The iPTS system produced a better solution by saving 11 from 116 buses and 16 from 182 crews.

The computational time was very short (the elapsed time less than 4 minutes on a Pentium III 1 gHz PC).
The schedules generated have meet all the requirements, especially the particular ones of BJBUS .

AWARDS

International Federation of Operational Research Societies (IFORS) "IFORS Prize for Operational Research in Development ", Runner-up

Case Study: in Xiaogan Bus Group

Even Headways

For the common route segment

Headways in Wangyao Terminal (Ori)

Case Study: in Jingmen - timetable

Case Study: in Guangzhou

A complicated bus route (108) with several short lines

Case Study: in Guangzhou

Running time analysis

To increase the on-time performance

Fig. 2 Running time (Weekdays)

Fig. 3 Running time (Weekends)

Case Study: in Guangzhou

Headway optimization

meet
passenger demands
\& even headways

Fig. 1 Headways in 108 (NY-DS) in the manual schedule

Fig. 2 Optimized headways in 108 (NY-DS)

Case Study：in Guangzhou

A vehicle schedule

A driver schedule

时 总工时 班次类型 签到地

	$00: 22$
	$00: 1$
	$00: 17$
53	$00: 22$
	$00: 17$
51	
	$00: 20$

Vehicle scheduling based on AVL data

Route designing

Brídge

Frequency setting \& Timetabling

*ach sub-problem in the 'bridge' is individually hard,

* it is infeasible to develop a global solution approach.
- A simple but applicable bridge is more acceptable in China.

On-site operation, incl. dispatching, running

Vehicle scheduling based on AVL data

Vehicle scheduling based on AVL data

Vehicle Scheduling Problem (VSP)

Vehicle Scheduling Problem (VSP) is concerned with the allocation of a set of trips in a predetermined timetable to a fleet of vehicles, in such a way that

- the total number of vehicles and operating cost are minimized .

An efficient schedule can bring transit operators a considerable saving on property and operating cost.

Each trip contains a start time at its departure point and an end time at its arrival point. 9:00 9:40

The network flow representation of VSP

* The VSP can be represented as a network flow

* Each trip is represented as a departure node and an arrival node, connected by a trip arc:

The objectives of VSP

$$
A \longrightarrow B \rightarrow B
$$

1．To minimize the fleet size
 2．To minimize the total operating cost

idle time：waiting time between any two consecutive trips．
deadhead time：
empty movement between any two consecutive trips
depot－return：when the gap between two consecutive trips is large enough（e．g．more than 3 h ）， a vehicle is enforced to return to a depot temporarily

Formulations of traditional VSPs

＊Let P denotes the set of pull－out arcs，Q denotes the set of pull－out arcs， R denotes the set of trip－link arcs， $A=P \cup Q \cup R$ denotes the set of all arcs
＊Given a depot d and a set of trips T ， the VSP with single depot can be modelled as follows．

$$
\begin{align*}
& \min \sum_{(i, j) \in A} c_{i j} x_{i j} \tag{1}\\
& \text { st. } \sum_{i:(i, j) \in A} x_{i j}-\sum_{i:(j, i) \in A} x_{j i}=0, \quad \forall j \in T \tag{2}\\
& \sum_{j:(d, j) \in P} x_{d j}-\sum_{i:(i, d) \in Q} x_{i d}=0 \tag{3}\\
& \sum_{i:(i, j) \in A} x_{i j}=1, \quad \forall j \in T \tag{4}\\
& x_{i j} \in\{0,1\}, \quad \forall(i, j) \in A \tag{5}
\end{align*}
$$

＊Given a set of depots D and a set of trips T ， the VSP with multi depots（MDVSP）can be modelled as follows．

$$
\begin{array}{ll}
\min \sum_{d \in D} \sum_{(i, j) \in A^{d}} c_{i j}^{d} \cdot x_{i j}^{d} & \\
\text { st. } \sum_{i:(i, j) \in A^{d}} x_{i j}-\sum_{i:(j, i) \in A^{d}} x_{j i}=0, & \forall j \in T, \forall d \in D \\
\sum_{j:(d, j) \in P} x_{d j}-\sum_{i:(i, d) \in Q} x_{i d}=0, & \forall d \in D \\
\sum_{d \in D} \sum_{i:(i, j) \in A^{d}} x_{i j}=1, & \forall j \in T \\
x_{i j} \in\{0,1\}, & \forall(i, j) \in A \tag{5}
\end{array}
$$

VSP based on fixed trip times

－Each trip in the timetable has
－a fixed departure time
－a fixed trip time－ called scheduled trip time（ST）

$$
\text { Trip } i: \mathrm{A} \longrightarrow \mathrm{~B}
$$

$$
T_{i}^{s} \quad T_{i}^{e}
$$

Variation of trip times

* The travel time at each route segment usually varies dramatically in different (e.g. peak- or off-peak) periods through a day due to fickle traffic, uncertain passenger demands and vehicle malfunction, etc.
It is well known that the travel time is hard to be precisely measured and predicted (Chakroborty and Kikuchi, 2004; Vu and Khan, 2010; Ng et al., 2011).

Trip times abstracted from the AVL data of Bus Line 4 in the city of Haikou (11585 samples)

Two main problems raised in the traditional VSP

－Due to trips times vary dramatically during a day，therefore， based on fixed scheduled trip times（STs），

Problems with

 fixed STs（1）on－time performance：
The resulting schedule is hard to comply with in practice
（2）parameters setting：
Setting STs is very time－consuming and often frustrates schedulers
＊To increase the on－time performance of a schedule， the common practice is to increase the scheduled trip times（STs）．

The influnece of increasing STs

With enlarged scheduled trip times, the on-time performance of the resulting schedule will increase.
On-time performance

However, enlarged STs may lead to the increase of the schedule's operating cost, even more vehicles are needed.

* STs affect service reliability
- Longer STs: high cost
- Shorter STs: low on-time performance

Therefore, it is non-trivial to set suitable scheduled trip times.

Vehicle scheduling based on AVL data

Vehicle scheduling approaches based on AVL data, which aim to

- increase the on-time performance of compiled schedules
- reduce the pressure of human schedulers

Vehicle scheduling based on AVL data

The approach is composed of the following steps:

To set more accurate STs automatically

Vehicle scheduling with stochastic trip times

Handling AVL data, partitioning service span into HRT periods based on observed travel times

7 HRT bands/periods

- Mean trip time in an initial time band
- Mean trip time in a HRT band

Iesday February 2, 2022

- Standard deviation in an initial time band

Empirical distributions of HKB4 (outbound)

The trip time distribution for each HRT period is abstracted based on the AVL data

Empirical distributions of HKB4 (inbound)

Demonstrate the fitting of the distribution models to the empirical distributions

＊It can be seen that the Burr distribution can match better the data

> | - Empirical |
| :--- |
| -- Burr |
| --- Normal |

针作科技大整
Global Scheduling Seminar on Zoom on Wednesday February 2， 2022

A compound travel time model

* Data from Bus Line 4 in Haikou

Shen Yindong, Xu Jia, Wu Xianyi, Ni Yudong. Modelling travel time distributions using distribution fitting methods and its influence over stochastic vehicle scheduling. Transport, 2019, 34(2): 237-249.

Stochastic Vehicle scheduling

－To incorporate the stochastic trip times in the VSP model （in the light of AVL data）

Global Scheduling Seminar on Zoom on Wednesday February 2， 2022

Compile a schedule based on stochastic trip times

* Diverting from the traditional vehicle scheduling,

Compatibility of a pair of trips

* Bertossi et al.(1987) defined the compatibility of any two trips i and j as

$$
T_{j}^{s} \not T_{i}^{e} \geq D H_{i j}
$$

The compatibility probability can be expressed as

$$
P\{i \Theta j\}=\int_{0}^{T_{j}^{s}-T_{i}^{s}-D H_{i j}} f_{i}(t) d t
$$

Compatibility and incompatibility probability

* Between the trips i and j, an arc (i, j) is defined if $P\{i \Theta j\}>0$; otherwise, no arc exists.
* Each arc (i, j) is also associated with an incompatibility probability

$$
\mathrm{P}\{i \bar{\Theta} j\}=1-P\{i \Theta j\}
$$

where, $\quad i \bar{\Theta} j$ denotes the incompatibility of trips i and j.

A probabilistic model for VSP (PVSP)

$$
\begin{array}{|cc|c|}
\min \sum_{(d, j) \in P} C_{v e h} x_{d j}+\sum_{(i, j) \in A} C_{i j} x_{i j}+\alpha \cdot \sum_{(i, j) \in R} P_{i j} x_{i j} & \text { (1) } \\
\text { s.t. } \sum_{i:(i, j) \in A} x_{i j}-\sum_{i:(j, i) \in A} x_{j i}=0, & \forall j \in T & \\
\sum_{j:(d, j) \in P} x_{d j}-\sum_{i:(i, d) \in Q} x_{i d}=0, & \forall d \in D & \\
\sum_{\substack{i:(i, j) \in A \\
x_{i j} \in\{0,1\},}} x_{i j}=1, & \forall j \in T &
\end{array}
$$

The cost and penalty for the trip-link arcs:

- Cost (deadhead \& idle time)

$$
C_{i j}=D H_{i j}+E\left(I D_{i j}\right)=D H_{i j}+\int_{0}^{T_{j}^{S}-T_{i}^{S}-D H_{i j}}\left(T_{j}^{S}-T_{i}^{S}-t-D H_{i j}\right) f_{i}(t) d t
$$

- Penalty (infeasible time --- When the trips i and j are incompatible, $I F_{i j} \geq 0$; otherwise, let $I F_{i j}=0$.)

$$
P_{i j}=E\left(I F_{i j}^{2}\right)=\int_{T_{j}^{S}-T_{i}^{S}-D H_{i j}}^{+\infty}\left(T_{i}^{s}+t-T_{j}^{S}+D H_{i j}\right)^{2} f_{i}(t) d t
$$

Enhancement of PVSP considering delay propagation

＊In practice，the delay can propagate between the consecutive trips operated by the same vehicle．
＊Such delay propagation can cause more delays to the pre－compiled schedule．

Considering delay propagation between two trips i and j ：
－The departure time of trip j is no－longer deterministic and depends on the compatible probability of trips i and j ．
－When the trips i and j are compatible，trip j can either depart on－time，or， experience a departure delay．
－The arrival time of trip j is affected by both its departure time and its trip time．

慈中科技大学
Huazhong University of Science \＆Technology

An enhanced probabilistic model for VSP (PVSP-DP)

* Formulate the probabilistic model of VSP with delay propagation (PVSP-DP)

1. The expected idle time $\mathrm{E}\left(I D_{i j}\right)$ in the cost of a trip-link arc, is expressed as:

$$
\begin{equation*}
E\left(I D_{i j}\right)=\int_{0}^{T_{j}^{s}-D H_{i j}}\left(T_{j}^{s}-t_{i}^{e}-D H_{i j}\right) f_{i}^{e}(t) d t \tag{1}
\end{equation*}
$$

2. The penalty of trip-link arc, is expressed as:

$$
\begin{equation*}
\mathrm{E}\left(\mathrm{DD}_{\mathrm{ij}}^{2}\right)=\int_{\mathrm{T}_{\mathrm{j}}^{\mathrm{s}}-\mathrm{DH}_{\mathrm{ij}}}^{+\infty}\left(\mathrm{t}_{\mathrm{i}}^{\mathrm{e}}-\mathrm{T}_{\mathrm{j}}^{\mathrm{s}}+\mathrm{DH}_{\mathrm{ij}}\right)^{2} \mathrm{f}_{\mathrm{i}}^{\mathrm{e}}(\mathrm{t}) \mathrm{dt} \tag{2}
\end{equation*}
$$

3. The other parts of the model remains unchanged.

A heuristic approach for the PVSP－DP model

＊Stage 1：Matching based heuristic to form an initial schedule：
（1）The tier partitioning is to partition all the trips into different tiers；
（2）Link all the tiers into a initial schedule by solving a sequence of matching problem．
＊Stage 2：Refinement．The iterative greedy local search method is to firstly break part of the arcs in the current schedule，and then to re－link the nodes by solving the sub－problem containing a small subset of nodes．

Vehicle 1

Vehicle 2

Vehicle n

慈中科技大学
Huazhong University of Science \＆Technology

Benchmark schedules with DVSP model

Compile benchmark schedules with DVSP model:

- To rules-of-thumb for setting the scheduled trip times are adopted: the $85^{\text {th }}$ percentile of trip time; the sum of mean and standard deviation of trip time.
- Adjust by +/- 1 minute based on the two rules-of-thumb, 6 groups of scheduled trip times forms 6 problems of vehicle scheduling. Solved by CPLEX, 6 vehicle schedules are produced.
- From the results, along the increment of ST, the operating cost of schedule is increased, while the penalty is decreased(better on-time performance), however, the fleet size is greatly influenced by the ST.
- The best benchmark schedule is selected with respect to the best on-time performance of 28 vehicles

Problem	ST setting method	ST adjustment	Fleet size	Trip time	E(ID)	Deadhe ad	Operating cost	Penalty	Objective value
T1	Rule-ofthumb 1	-1	27	22816	2313	1980	4293	9577	45659
T2		0	28	23270	2698	2040	4738	6713	42807
T3		1	29	23724	3372	2100	5472	3497	39718
T4	Rule-ofthumb 2	-1	28	23290	2762	2100	4862	5637	41317
T5\#		0	$\underline{28}$	23744	3315	2040	5355	3627	38796
T6		1	29	24198	3611	2250	5861	2769	39015

Schedules compiled with PVSP model

- Schedules produced by PVSP model:

Schedules produced by the PVSP-DP model

- Solution with PVSP-DP model:

Conclusions

(1) Experimental results show that both of the probabilistic models can produce the schedules with the same fleet size but considerably higher on-time performance than the best known schedule generated under DVSP model.
(2) Comparing the two probabilistic models, the PVSP-DP model may further increase the on-time performance, while the fleet size remains the same but with a little compromise in the operating cost.
(3) Moreover, with the aid of the probabilistic models, human schedulers can be saved from the work of determining scheduled trip times, which is non-trivial and often frustrates schedulers.

Shen Y, Xu J, Li J. A probabilistic model for vehicle scheduling based on stochastic trip times. Transportation Research Part B, 2016, 85(1): 19-31.

Thank You！

Questions？

