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Matheuristics at a glance

First contact

MATHEuristics are not METAheuristics but are Metaheuristics,

General definition ([1a, 1b, 1c]):

”Matheuristic is the hybridization of mathematical programming with
metaheuristics. [...] Matheuristic is not a rigid paradigm but rather a
concept framework for the design of mathematically sound heuristics.”

Take a scheduling problem and its MIP formulation, impose a time
limit to the solver ⇒ matheuristic,
Interest of Matheuristics: to rely on (more and more) efficient
blackbox solvers ([2]),

[1a] Fischetti, M., Fischetti, M. (2018). Matheuristics. In: Mart́ı R., Pardalos P., Resende M. (eds), Handbook of Heuristics.
Springer.
[1b] Maniezzo, V., Stützle, T., Voß, S. (2009). Matheuristics: Hybridizing Metaheuristics and Mathematical Programming, 1st
edn., Springer.
[1c] Ball, M.O. (2011). Heuristics based on mathematical programming, Surveys in Operations Research and Management
Science, 16:21-38.
[2] Della Croce, F. (2016). MP or not MP: that is the question, Journal of Scheduling, 19:33-42.
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Matheuristics at a glance

A quick look at the literature

Relatively recent,

Mostly used for solving routing (and scheduling) problems,

Hard to sketch a general scheme for matheuristics: RINS, Local
Branching, VPLS, CMSA, Proximity Search, CRB, Relax-and-fix,
POPMUSIC, ...
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Matheuristics at a glance

A quick look at the literature

Constructive MH: use an IP to iteratively build a solution to the
problem,

Local Search MH: use an IP in the context of a local search (requires
to know an initial solution),

Evolutionary MH: embed the solution of an IP into an evolutionary
algorithm,

This talk: a personal view based on my own experience of Local
Search MH.
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Matheuristics at a glance

A general scheme (Local Search MH)

Matheuristic as LNS heuristics
([1,3]),

We start from a known initial
solution s0,

Exploration of the
neighbourhood N (st): by MIP
(intensification),

In case of local optimum:
diversification by MIP.

[1] Fischetti, M., Fischetti, M. (2018). Matheuristics. In: Mart́ı R., Pardalos P., Resende M. (eds), Handbook of Heuristics.
Springer.
[3] Della Croce, F., A. Grosso, F. Salassa (2013). Matheuristics: Embedding MILP solvers into heuristic algorithms for
combinatorial optimization problems, P. Siarry (Eds): Heuristics: Theory and Application, Nova Science Publisher, 53–68.
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Matheuristics can be stubborn

A general scheme (intensification)

Consider a MIP formulation of
your problem (crucial choice),

Let be st the current solution
and x t = [x tij ]ij the associated
values of variables,

Neighbourhood definition:
optimize around st allowing
few variables x tij to be changed,

Variable-fixing based
intensification:

1 Determine a subset St of
variables xij ,

2 Fix all variables in St to
their value in x t .

min
n∑

j=1

C[j] (1)

subject to

n∑
i=1

xij = 1 ∀j = 1, . . . , n (2)

n∑
j=1

xij = 1 ∀i = 1, . . . , n (3)

C[1] =
n∑

i=1

(pi + ri )xi1 (4)

C[j] ≥ C[j−1] +
n∑

i=1

pi xij ∀j = 2, . . . , n (5)

C[j] ≥
n∑

i=1

(pi + ri )xij ∀j = 2, . . . , n (6)

xij ∈ {0, 1}, C[j] ≥ 0 (7)

(8)
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Matheuristics can be stubborn

A general scheme (intensification)

Variable-fixing based intensification: VPLS, Relaxation-Induced
Neighbourhood Search (RINS), Fix-and-Optimize, ...

Distance based intensification: local branching,

1 Determine a subset St of variables xij ,
2 Add a “distance measure” constraint, e.g. the Hamming distance:

min
∑n

j=1 C[j]

subject to
(1-7)

∆St (x , x t) =
∑

(ij)∈St ,x t
ij=0

xij +
∑

(ij)∈St ,x t
ij=1

(1− xij) ≤ k

with k a given parameter.
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Matheuristics can be stubborn

VPLS: on which problem?

We illustrate the Variable Partitioning Local Search (VPLS) on the
F2||

∑
j Cj problem ([4]),

n jobs have to be scheduled on two machines,
Each job j is defined by a processing time pj,i on machine i = 1, 2,
Machines are organized in a flowshop setting: each job has to be
processed first on machine 1 and next on machine 2,

Cj,i : completion time of job j on machine i ,
A schedule is a permutation σ of the jobs,
This problem is strongly NP-hard.

[4] Della Croce, F., A. Grosso, F. Salassa (2014). A matheuristic approach for the two-machine completion time flow shop
problem, Annals of Operations Research, 213:67–78.
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Matheuristics can be stubborn

VPLS: the recipe

Exploit a direct position-based IP formulation: xij = 1 is job j is in
position i ; 0 otherwise,

Initialization: s0 is computed by the Recovering Beam Search
heuristic of [5],

Neighbourhood definition N (st):

⇒ well suited for permutation problems.

[5] Della Croce, F., Ghirardi, M., Tadei, R. (2004). Recovering Beam Search: enhancing the beam search approach for
combinatorial optimization problems. Journal of Heuristics, 10:89-104.
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Matheuristics can be stubborn

VPLS: the recipe

Random selection of r ⇔
random selection of N (st),

First improving neighbourhood,

Stopping condition: a given
time limit Tstop is reached or no
improving neighbourhood.

V. T’Kindt ( University of Tours, LIFAT (EA 6300), France. ) February 15, 2023 12 / 46



Matheuristics can be stubborn

VPLS: the recipe

Random selection of r ⇔
random selection of N (st),

First improving neighbourhood,

Stopping condition: a given
time limit Tstop is reached or no
improving neighbourhood.

V. T’Kindt ( University of Tours, LIFAT (EA 6300), France. ) February 15, 2023 12 / 46



Matheuristics can be stubborn

VPLS: the recipe

Random selection of r ⇔
random selection of N (st),

First improving neighbourhood,

Stopping condition: a given
time limit Tstop is reached or no
improving neighbourhood.

V. T’Kindt ( University of Tours, LIFAT (EA 6300), France. ) February 15, 2023 12 / 46



Matheuristics can be stubborn

VPLS: the cake

Experimental results on randomly generated instances ([4]):

The choice of h = 12 is a good trade-off between time spent at each
intensification phase and quality of the computed solution,
Results on instances with n = 100 (Tstop = 60s),

VPLS/LB (%) CPLEXt/LB (%) VPLS/CPLEXt (%) CPLEXt-VPLS
0.26 0.46 0.20 370

For n = 300, 500 similar results,
Best state-of-the-art heuristic for n ≤ 300,
Competitive with SAwGE ([6]) for n = 500 (due to computational
requirement).

[6] Czapinski, M. (2010). Parallel simulated annealing with genetic enhancement for flowshop problem with Csum. Computers &
Industrial Engineering, 59, 778–785.
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Matheuristics can be stubborn

VPLS: the cherry on the cake

What about the impact of the random choice of r?

50 executions of VPLS on an instance with n = 100 and Tstop = 60s,

Scale of values: [200715; 200752].

Time to best: 36s (avg) and 52s (max),

Improve the strategy for selecting a neighbourhood to explore or
introduce diversification.
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Matheuristics can be stubborn

VPLS: Conclusions

VPLS can be seen as a very efficient extension of standard local
search heuristics,

The experiments on the F2||
∑

j Cj problem highlight that:

1 VPLS can be stuck in local optima,
2 The random choice of r yields instability in terms of computed solution

(alternative: test all r from 0 onwards),
3 The experimental choice of h can be understood, but would not it be

better to have a dynamic value of h?
4 High CPU time: explore a lot of useless neighbourhoods.

Considering windows of positions makes sense for permutation
problems,

Can be extended to problems with assignment... but is it the best
choice?
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Matheuristics can be stubborn

VPLS: Conclusions

Use of distance based neighbourhood (case of the Hamming distance),

∆St (x, x
t ) =

∑
(ij)∈St ,xt

ij
=0

xij +
∑

(ij)∈St ,xt
ij
=1

(1 − xij )

Neighbourhood definition:
N (st) = {x |∆St (x , x t) ≤ k}, with
k a given parameter,

The neighbourhood is larger than
with the windows of position
approach ⇒ intensification is
expected to be more time
consuming,

VPLS with such a N (st) can be
seen as a “dual” version of
Proximity Search ([7]).

[7] Fischetti M., Monaci, M. (2014). Proximity search for 0–1 mixed-integer convex programming. Journal of Heuristics,
6(20):709–731.
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Matheuristics can be curious

A general scheme (diversification)

All you need is love... and diversification,

Diversification is just: Get out of this neighbourhood!
⇒ Find a solution x t+1 /∈ N (st).

Easy to define on distance based neighbourhoods:

Impose ∆St (x , x t) > k .

Local Branching is a perfect example of a matheuristic using both
intensification and diversification.
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Matheuristics can be curious

Local Branching: the principles

Consider the Hamming distance ∆St (x , x t) on boolean variables xij ,

Introduced in [8] as an exact branching algorithm from which a
matheuristic framework is derived,

We directly present Local Branching as a matheuristic assuming that:

1 Each time a MIP has to be solved a time limit is imposed,
2 k is the given radius defining the size of the neighbourhood,
3 ℓ is the given radius used for diversification.

V. T’Kindt ( University of Tours, LIFAT (EA 6300), France. ) February 15, 2023 19 / 46



Matheuristics can be curious

Local Branching: the principles

Consider the Hamming distance ∆St (x , x t) on boolean variables xij ,

Introduced in [8] as an exact branching algorithm from which a
matheuristic framework is derived,

We directly present Local Branching as a matheuristic assuming that:

1 Each time a MIP has to be solved a time limit is imposed,
2 k is the given radius defining the size of the neighbourhood,
3 ℓ is the given radius used for diversification.

V. T’Kindt ( University of Tours, LIFAT (EA 6300), France. ) February 15, 2023 19 / 46



Matheuristics can be curious

Local Branching: the principles

Consider the Hamming distance ∆St (x , x t) on boolean variables xij ,

Introduced in [8] as an exact branching algorithm from which a
matheuristic framework is derived,

We directly present Local Branching as a matheuristic assuming that:

1 Each time a MIP has to be solved a time limit is imposed,
2 k is the given radius defining the size of the neighbourhood,
3 ℓ is the given radius used for diversification.

V. T’Kindt ( University of Tours, LIFAT (EA 6300), France. ) February 15, 2023 19 / 46



Matheuristics can be curious

Local Branching: the principles

Consider the Hamming distance ∆St (x , x t) on boolean variables xij ,

Introduced in [8] as an exact branching algorithm from which a
matheuristic framework is derived,

We directly present Local Branching as a matheuristic assuming that:
1 Each time a MIP has to be solved a time limit is imposed,

2 k is the given radius defining the size of the neighbourhood,
3 ℓ is the given radius used for diversification.

V. T’Kindt ( University of Tours, LIFAT (EA 6300), France. ) February 15, 2023 19 / 46



Matheuristics can be curious

Local Branching: the principles

Consider the Hamming distance ∆St (x , x t) on boolean variables xij ,

Introduced in [8] as an exact branching algorithm from which a
matheuristic framework is derived,

We directly present Local Branching as a matheuristic assuming that:
1 Each time a MIP has to be solved a time limit is imposed,
2 k is the given radius defining the size of the neighbourhood,

3 ℓ is the given radius used for diversification.

V. T’Kindt ( University of Tours, LIFAT (EA 6300), France. ) February 15, 2023 19 / 46



Matheuristics can be curious

Local Branching: the principles

Consider the Hamming distance ∆St (x , x t) on boolean variables xij ,

Introduced in [8] as an exact branching algorithm from which a
matheuristic framework is derived,

We directly present Local Branching as a matheuristic assuming that:
1 Each time a MIP has to be solved a time limit is imposed,
2 k is the given radius defining the size of the neighbourhood,
3 ℓ is the given radius used for diversification.

V. T’Kindt ( University of Tours, LIFAT (EA 6300), France. ) February 15, 2023 19 / 46



Matheuristics can be curious

Local Branching: the principles

V. T’Kindt ( University of Tours, LIFAT (EA 6300), France. ) February 15, 2023 20 / 46



Matheuristics can be curious

Local Branching: the principles

V. T’Kindt ( University of Tours, LIFAT (EA 6300), France. ) February 15, 2023 20 / 46



Matheuristics can be curious

Local Branching: the principles

V. T’Kindt ( University of Tours, LIFAT (EA 6300), France. ) February 15, 2023 20 / 46



Matheuristics can be curious

Local Branching: the principles

V. T’Kindt ( University of Tours, LIFAT (EA 6300), France. ) February 15, 2023 20 / 46



Matheuristics can be curious

Local Branching: the principles

V. T’Kindt ( University of Tours, LIFAT (EA 6300), France. ) February 15, 2023 20 / 46



Matheuristics can be curious

Local Branching: the principles

V. T’Kindt ( University of Tours, LIFAT (EA 6300), France. ) February 15, 2023 20 / 46



Matheuristics can be curious

Local Branching: Scheduling... you said Scheduling?

Fischetti and Lodi ([8]) suggest:

To use a soft diversification before the strong one: try to find a feasible
solution in a large neighbourhood, e.g. of size 3k

2 ,

In the strong diversification to consider ℓ = 1,
The matheuristic can be also stopped after a maximum number of
diversifications is reached.

Very (very) little applications on scheduling problems:

1 In [9]: Applied to FH2|rj , d̃j |
∑

j wjCj . No diversification.

[9] Yang, F., Roel, L. (2021). Scheduling hybrid flow shops with time windows, Journal of Heuristics, 27:133–158.

V. T’Kindt ( University of Tours, LIFAT (EA 6300), France. ) February 15, 2023 21 / 46



Matheuristics can be curious

Local Branching: Scheduling... you said Scheduling?

Fischetti and Lodi ([8]) suggest:

To use a soft diversification before the strong one: try to find a feasible
solution in a large neighbourhood, e.g. of size 3k

2 ,
In the strong diversification to consider ℓ = 1,

The matheuristic can be also stopped after a maximum number of
diversifications is reached.

Very (very) little applications on scheduling problems:

1 In [9]: Applied to FH2|rj , d̃j |
∑

j wjCj . No diversification.

[9] Yang, F., Roel, L. (2021). Scheduling hybrid flow shops with time windows, Journal of Heuristics, 27:133–158.

V. T’Kindt ( University of Tours, LIFAT (EA 6300), France. ) February 15, 2023 21 / 46



Matheuristics can be curious

Local Branching: Scheduling... you said Scheduling?

Fischetti and Lodi ([8]) suggest:

To use a soft diversification before the strong one: try to find a feasible
solution in a large neighbourhood, e.g. of size 3k

2 ,
In the strong diversification to consider ℓ = 1,
The matheuristic can be also stopped after a maximum number of
diversifications is reached.

Very (very) little applications on scheduling problems:

1 In [9]: Applied to FH2|rj , d̃j |
∑

j wjCj . No diversification.

[9] Yang, F., Roel, L. (2021). Scheduling hybrid flow shops with time windows, Journal of Heuristics, 27:133–158.

V. T’Kindt ( University of Tours, LIFAT (EA 6300), France. ) February 15, 2023 21 / 46



Matheuristics can be curious

Local Branching: Scheduling... you said Scheduling?

Fischetti and Lodi ([8]) suggest:

To use a soft diversification before the strong one: try to find a feasible
solution in a large neighbourhood, e.g. of size 3k

2 ,
In the strong diversification to consider ℓ = 1,
The matheuristic can be also stopped after a maximum number of
diversifications is reached.

Very (very) little applications on scheduling problems:

1 In [9]: Applied to FH2|rj , d̃j |
∑

j wjCj . No diversification.

[9] Yang, F., Roel, L. (2021). Scheduling hybrid flow shops with time windows, Journal of Heuristics, 27:133–158.

V. T’Kindt ( University of Tours, LIFAT (EA 6300), France. ) February 15, 2023 21 / 46



Matheuristics can be curious

Local Branching: Scheduling... you said Scheduling?

Fischetti and Lodi ([8]) suggest:

To use a soft diversification before the strong one: try to find a feasible
solution in a large neighbourhood, e.g. of size 3k

2 ,
In the strong diversification to consider ℓ = 1,
The matheuristic can be also stopped after a maximum number of
diversifications is reached.

Very (very) little applications on scheduling problems:
1 In [9]: Applied to FH2|rj , d̃j |

∑
j wjCj . No diversification.

[9] Yang, F., Roel, L. (2021). Scheduling hybrid flow shops with time windows, Journal of Heuristics, 27:133–158.

V. T’Kindt ( University of Tours, LIFAT (EA 6300), France. ) February 15, 2023 21 / 46



Matheuristics can be curious

Local Branching: on which problem?

Consider the following Graph Edit Distance (GED) problem,

We have two graphs G = [V ;E ] and G ′ = [V ′;E ′]...

... and we want to know how much G resembles to G ′.
In addition to the graphs, we know:

1 The cost for deleting or creating a vertex from G : a constant τ ,
2 The cost for deleting or creating an edge in G : the same constant τ ,
3 The cost cjk for matching j ∈ V with k ∈ V ′.

Find the matching of G and G ′ which minimizes the total matching
cost,
This problem is strongly NP-hard.

[10] Darwiche, M., Conte, D., Raveaux, R., T’kindt, V. (2019). A local branching heuristic for solving a Graph Edit Distance
problem, Computers and Operations Research, 106:225–235.
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Matheuristics can be curious

Local Branching on the GED: the ingredients

This is an assignment problem for which we use the following IP
formulation ([11]),

Boolean variables xij = 1 if
vertex i ∈ V is matched
with vertex j ∈ V ′,

Boolean variables sij and tij
represent edge
deletion/adding,

The important variables are
the xij ’s ⇒
St = {xij |i , j = 1..N}.

Minimize
N∑
i=1

N∑
j=1

(
cij xij +

τ

2
(sij + tij )

)
st

N∑
k=1

Aik xkj −
N∑

c=1

xicA
′
cj + sij − tij = 0 ∀i, j = 1..N

N∑
i=1

xik =
N∑
j=1

xkj = 1 ∀k = 1..N

[11] Justice, D. , Hero, A. (2006). A binary linear programming formulation of the graph edit distance. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 28(8):1200–1214.
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Matheuristics can be curious

Local Branching on the GED: the ingredients

Initialization: x0 is computed by solving the IP with a (short)
time limit,

Neighbourhood definition: N (st) = {x |∆St (x , x t) ≤ k},
Intensification:

1 Explore N (st) by solving the IP within a time limit Tnode ,
2 If no improving solutions are found due to the time limit ⇒ change the

radius to k
2 and solve again.

Diversification:

1 Soft diversification doesn’t help,
2 Strong diversification on a subset St

I ⊆ St of “important” variables,
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Matheuristics can be curious

Local Branching on the GED: the ingredients

Diversification:
1 How to determine St

I ?

2 Independently of x t , compute matrix M = [mij ]ij with mij the cost of
matching vertex i ∈ V with j ∈ V ′,

mij = cij + θij ,

with θij a lower bound on the costs induced by matching the edges of i
with those of j (assignment problem).

3 We compute standard deviations σi over all values mij ,∀j = 1..|V ′|+1,
4 Binary classification of the variables (Nearest Neighbour) to separate

the small from the high standard deviation vertices,
5 St

I contains the variables xij associated to the the high standard
deviation vertices i ∈ V ,

6 To diversify with solve the IP with the constraint:

∆St
I
(x , x t) ≥ ℓ.
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Matheuristics can be curious

Local Branching on the GED: the cake

Stopping condition: (max time limit Tsolve is reached) or (max
number of diversifications Divsolve is reached),

Experimental results on two databases of graphs representing
chemical molecules,

PAH: 94 graphs with up to 28 vertices (8836 instances).

k = 20, ℓ = 30,
Tnode = 1.75s, Tsolve = 12.25s, Divsolve = 3.

MUTA: 80 graphs from 10 to 70 vertices (6400 instances).

k = 20, ℓ = 30,
Tnode = 180s, Tsolve = 900s, Divsolve = 3.
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Matheuristics can be curious

Local Branching on the GED: the cake

On PAH instances:

Average CPU time: 3s,
Gap to optimality: < 0.35%,
76% of the instances were solved to optimality by local branching.

On MUTA instances:

Average CPU time: 750s on the largest instances,
Gap to the best known solution1: < 0.78%.

⇒ Outperforms all the known heuristics (in 2021) on the GED
problem.

1Computed by solving the IP formulation with a time limit of 10h per instance
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Matheuristics can be curious

Matheuristics: a first pit stop

Very efficient heuristics...

Some points of attention when designing such a heuristic:

1 The choice of the IP formulation is crucial: fast convergence towards
an optimal solution,

2 Not necessary to let the IP solver running until it proves optimality:
experimental tuning,

3 The choice of variables St is important: put the variables generating
the combinatorics (and maybe not all of them),

4 Neighbourhood size (r , h, k ...): must be fixed to find a good tradeoff
between minimizing the number of iterations and total CPU time,

5 Diversification seems to be really useful.
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Matheuristics can be curious

Matheuristics: a first pit stop

... but time consuming!

Ways to improve the situation:

1 Limit the number of “useless” neighbourhoods (VPLS),
2 Limit the size of the IPs to solve: time and ability to solve large-size

instances (VPLS more suitable than Local Branching),
3 Adjust the neighbourhood size dynamically.
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Can Machine Learning be of any help?

Outline

1 Matheuristics at a glance

2 Matheuristics can be stubborn

3 Matheuristics can be curious

4 Can Machine Learning be of any help?

5 Conclusions
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Can Machine Learning be of any help?

Matheuristics and Machine Learning

Goal: find the most suitable neighbourhoods to explore,

We go back to the F2||
∑

j Cj problem and VPLS,

Neighbourhood definition N (st):

The neighbourhoods to explore are defined by r and h,

Can we use Machine Learning to predict the best r and h for a given
st?
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Can Machine Learning be of any help?

The ml-VPLS heuristic

Ideal goal: to have an oracle (predictor) capable of predicting the
values of r and h for a given st ,

Reasonable goal: design, for given r , h and s, an oracle predicting if
the reoptimization leads to a better st+1,

Use of structured machine learning to solve this classification problem
(features based approach, [40]),

[40] T’kindt, V., Raveaux, R. (2022). A learning based matheuristic to solve the two machine flowshop scheduling problem with
sum of completion times. 23rd French Conference on Operations Research and Decision Aid (ROADEF), Lyon, France.
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Can Machine Learning be of any help?

The ml-VPLS heuristic

To any x = [r ; h; s], we associate a vector ϕ(x) ∈ R90 of 90 features,

We want to build a predictor p(ϕ(x), θ∗) ∈ [0; 1], with θ∗ ∈ Θ.

⇒ When p(ϕ(x), θ∗) ≥ 0.5, we’ll assume that it’s worth reoptimizing s in
the window [r ; r + h].

Predictor p() is a neural network and the θ are weights (Deep
Learning).
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Can Machine Learning be of any help?

The ml-VPLS heuristic

A set of 90 features,

Features are normalized and standardized.
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Can Machine Learning be of any help?

The ml-VPLS heuristic

Predictor (p) is a fully connected neural network:
It operates in a vector space (∈ R90).
Fast inference (prediction time).
Other models were put to the test such as 1-dimensional CNNs but
inference was too slow.
Number of parameters : 14 0000
Number of layers : 7
Overfitting breakers : Dropout, L1 regularization.
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Can Machine Learning be of any help?

The ml-VPLS heuristic: Building the predictor

To generate the training, validation and test databases, the same
protocol has been used:

1 Randomly generate 1000 instances of the scheduling problem for a
given n ∈ {50; 100},

2 Run MATH in which all windows [r ; r + h] are tested. For each
x = [r ; h; s] record ϕ(x) and the result y = 1/0,

Train Validation Test

#vectors 182 590 184 680 186 086

#1 35.65% 36.19% 36.33%

Table: Data sets description
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Can Machine Learning be of any help?

The ml-VPLS heuristic: After training
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Can Machine Learning be of any help?

Efficiency of ml-VPLS

We randomly generate 50 instances per problem size and we compare
four versions of the matheuristics:

VPLS: the original matheuristic,
r-VPLS: random decisions,
ml-VPLS: decisions taken by the predictor,
ml-VPLS+: optimize the 70% best intervals (predictions) at each
iteration.

On each instance, VPLS, r-VPLS and ml-VPLS are ran 10 times and
the average solution value is used to compute statistics,

A total time limit of 60s per instance for VPLS, r-VPLS and ml-VPLS.
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Can Machine Learning be of any help?

Efficiency of ml-VPLS

δavg (%) δmax (%) Tavg (s) Tmax (s) T2bestavg (s) T2bestmax (s)
VPLS 0.0031 0.046 61.13 61.36 5.62 22.18
r-VPLS 0.0034 0.060 61.14 61.39 5.88 24.58
ml-VPLS 0.0187 0.083 61.13 61.43 2.55 14.24
ml-VPLS+ 0.0055 0.048 7.38 22.87 3.36 15.13

- Results for n = 50 jobs -

The trained predictor generalizes well for n > 50,

Machine Learning seems interesting to make VPLS converging faster.
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ml-VPLS+ 0.0055 0.048 7.38 22.87 3.36 15.13

- Results for n = 50 jobs -

The trained predictor generalizes well for n > 50,

Machine Learning seems interesting to make VPLS converging faster.
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Conclusions

We have seen two examples of matheuristics as local searches,

A big picture of such approaches,

Dist. based MH VNS-MH Var. fixing based MH
Local Branch. VPLS POPMUSIC Fix & Opt

[9] [14] [9] [12] [4] [13] [16] [21] [18] [19] [25] [27] [29]
[31] [35] [34] [30]

Matheuristics can be also constructive heuristics or can result from
the hybridization of evolutionary algorithms and MIP....

Constructive MH Evol. Alg. MH Others
[14] [17] [23] [25] [26] [27] [20] [22] [24] [33] [36] [15] [22] [28] [37]

[32] [35] [38] [39]
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(Pro) Matheuristics can be very efficient heuristics for scheduling
problems,

(Pro) Matheuristics are quite easy to set up,

(Pro) Using non commercial MIP solver is relevant,

(Cons) Matheuristics can be time consuming,

(Cons) Matheuristics can have difficulties to scale up to large size
instances (MIP model and CPU time issues),

(Cons) A bunch of parameters to tune.

⇒ Recommendation of the day: if you have a MIP, set up a matheuristic!
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