The marriage of Matheuristics and Scheduling

Vincent T'kindt
University of Tours, LIFAT (EA 6300), France.

February 15, 2023

111 (1)

Outline

(1) Matheuristics at a glance

(2) Matheuristics can be stubborn

(3) Matheuristics can be curious

4 Can Machine Learning be of any help?
(5) Conclusions

First contact

- MATHEuristics are not METAheuristics but are Metaheuristics,
[1a] Fischetti, M., Fischetti, M. (2018). Matheuristics. In: Martí R., Pardalos P., Resende M. (eds), Handbook of Heuristics. Springer.
[1b] Maniezzo, V., Stützle, T., Voß, S. (2009). Matheuristics: Hybridizing Metaheuristics and Mathematical Programming, 1st edn., Springer.
[1c] Ball, M.O. (2011). Heuristics based on mathematical programming, Surveys in Operations Research and Management Science, 16:21-38.
[2] Della Croce, F. (2016). MP or not MP: that is the question, Journal of Scheduling, 19:33-42.

First contact

- MATHEuristics are not METAheuristics but are Metaheuristics,
- General definition ([1a, 1b, 1c]):
"Matheuristic is the hybridization of mathematical programming with metaheuristics. [...] Matheuristic is not a rigid paradigm but rather a concept framework for the design of mathematically sound heuristics."

[^0]
First contact

- MATHEuristics are not METAheuristics but are Metaheuristics,
- General definition ([1a, 1b, 1c]):
"Matheuristic is the hybridization of mathematical programming with metaheuristics. [...] Matheuristic is not a rigid paradigm but rather a concept framework for the design of mathematically sound heuristics."
- Take a scheduling problem and its MIP formulation, impose a time limit to the solver \Rightarrow matheuristic,

[^1]
First contact

- MATHEuristics are not METAheuristics but are Metaheuristics,
- General definition ([1a, 1b, 1c]):
"Matheuristic is the hybridization of mathematical programming with metaheuristics. [...] Matheuristic is not a rigid paradigm but rather a concept framework for the design of mathematically sound heuristics."
- Take a scheduling problem and its MIP formulation, impose a time limit to the solver \Rightarrow matheuristic,
- Interest of Matheuristics: to rely on (more and more) efficient blackbox solvers ([2]),

[^2]
A quick look at the literature

- Relatively recent,

A quick look at the literature

- Relatively recent,
- Mostly used for solving routing (and scheduling) problems,

A quick look at the literature

- Relatively recent,
- Mostly used for solving routing (and scheduling) problems,
- Hard to sketch a general scheme for matheuristics: RINS, Local Branching, VPLS, CMSA, Proximity Search, CRB, Relax-and-fix, POPMUSIC, ...

A quick look at the literature

- Constructive MH: use an IP to iteratively build a solution to the problem,

A quick look at the literature

- Constructive MH: use an IP to iteratively build a solution to the problem,
- Local Search MH: use an IP in the context of a local search (requires to know an initial solution),

A quick look at the literature

- Constructive MH: use an IP to iteratively build a solution to the problem,
- Local Search MH: use an IP in the context of a local search (requires to know an initial solution),
- Evolutionary MH: embed the solution of an IP into an evolutionary algorithm,

A quick look at the literature

- Constructive MH: use an IP to iteratively build a solution to the problem,
- Local Search MH: use an IP in the context of a local search (requires to know an initial solution),
- Evolutionary MH: embed the solution of an IP into an evolutionary algorithm,
- This talk: a personal view based on my own experience of Local Search MH.

A general scheme (Local Search MH)

- Matheuristic as LNS heuristics ([1,3]),
[1] Fischetti, M., Fischetti, M. (2018). Matheuristics. In: Martí R., Pardalos P., Resende M. (eds), Handbook of Heuristics. Springer.
[3] Della Croce, F., A. Grosso, F. Salassa (2013). Matheuristics: Embedding MILP solvers into heuristic algorithms for combinatorial optimization problems, P. Siarry (Eds): Heuristics: Theory and Application, Nova Science Publisher, 53-68.

A general scheme (Local Search MH)

- Matheuristic as LNS heuristics ([1,3]),
- We start from a known initial solution s^{0},

[1] Fischetti, M., Fischetti, M. (2018). Matheuristics. In: Martí R., Pardalos P., Resende M. (eds), Handbook of Heuristics. Springer.
[3] Della Croce, F., A. Grosso, F. Salassa (2013). Matheuristics: Embedding MILP solvers into heuristic algorithms for combinatorial optimization problems, P. Siarry (Eds): Heuristics: Theory and Application, Nova Science Publisher, 53-68.

A general scheme (Local Search MH)

- Matheuristic as LNS heuristics ([1,3]),
- We start from a known initial solution s^{0},
- Exploration of the neighbourhood $\mathcal{N}\left(s^{t}\right)$: by MIP (intensification),

[1] Fischetti, M., Fischetti, M. (2018). Matheuristics. In: Martí R., Pardalos P., Resende M. (eds), Handbook of Heuristics. Springer.
[3] Della Croce, F., A. Grosso, F. Salassa (2013). Matheuristics: Embedding MILP solvers into heuristic algorithms for combinatorial optimization problems, P. Siarry (Eds): Heuristics: Theory and Application, Nova Science Publisher, 53-68.

A general scheme (Local Search MH)

- Matheuristic as LNS heuristics ([1,3]),
- We start from a known initial solution s^{0},
- Exploration of the neighbourhood $\mathcal{N}\left(s^{t}\right)$: by MIP (intensification),
- In case of local optimum: diversification by MIP.

[1] Fischetti, M., Fischetti, M. (2018). Matheuristics. In: Martí R., Pardalos P., Resende M. (eds), Handbook of Heuristics. Springer.
[3] Della Croce, F., A. Grosso, F. Salassa (2013). Matheuristics: Embedding MILP solvers into heuristic algorithms for combinatorial optimization problems, P. Siarry (Eds): Heuristics: Theory and Application, Nova Science Publisher, 53-68.

Outline

(1) Matheuristics at a glance
(2) Matheuristics can be stubborn

(3) Matheuristics can be curious

4 Can Machine Learning be of any help?
(5) Conclusions

A general scheme (intensification)

- Consider a MIP formulation of your problem (crucial choice),

$$
\begin{equation*}
\min \sum_{j=1}^{n} c_{[j]} \tag{1}
\end{equation*}
$$

subject to

$$
\begin{array}{ll}
\sum_{i=1}^{n} x_{i j}=1 & \forall j=1, \ldots, n \\
\sum_{j=1}^{n} x_{i j}=1 & \forall i=1, \ldots, n \\
C_{[1]}=\sum_{i=1}^{n}\left(p_{i}+r_{i}\right) x_{i 1} & \\
C_{[j]} \geq C_{[j-1]}+\sum_{i=1}^{n} p_{i} x_{i j} & \forall j=2, \ldots, n \\
C_{[j]} \geq \sum_{i=1}^{n}\left(p_{i}+r_{i}\right) x_{i j} & \forall j=2, \ldots, n \\
x_{i j} \in\{0,1\}, \quad C_{[j]} \geq 0 & \tag{7}
\end{array}
$$

A general scheme (intensification)

- Consider a MIP formulation of your problem (crucial choice),
- Let be s^{t} the current solution and $x^{t}=\left[x_{i j}^{t}\right]_{i j}$ the associated values of variables,

$$
\begin{equation*}
\min \sum_{j=1}^{n} c_{[j]} \tag{1}
\end{equation*}
$$

subject to

$$
\begin{array}{ll}
\sum_{i=1}^{n} x_{i j}=1 & \forall j=1, \ldots, n \\
\sum_{j=1}^{n} x_{i j}=1 & \forall i=1, \ldots, n \\
C_{[1]}=\sum_{i=1}^{n}\left(p_{i}+r_{i}\right) x_{i 1} & \\
C_{[j]} \geq C_{[j-1]}+\sum_{i=1}^{n} p_{i} x_{i j} & \forall j=2, \ldots, n \\
C_{[j]} \geq \sum_{i=1}^{n}\left(p_{i}+r_{i}\right) x_{i j} & \forall j=2, \ldots, n \\
x_{i j} \in\{0,1\}, \quad C_{[j]} \geq 0 & \tag{7}
\end{array}
$$

A general scheme (intensification)

- Consider a MIP formulation of your problem (crucial choice),
- Let be s^{t} the current solution and $x^{t}=\left[x_{i j}^{t}\right]_{i j}$ the associated values of variables,
- Neighbourhood definition: optimize around s^{t} allowing few variables $x_{i j}^{t}$ to be changed,

$$
\begin{equation*}
\min \sum_{j=1}^{n} c_{[j]} \tag{1}
\end{equation*}
$$

subject to

$$
\begin{array}{ll}
\sum_{i=1}^{n} x_{i j}=1 & \forall j=1, \ldots, n \\
\sum_{j=1}^{n} x_{i j}=1 & \forall i=1, \ldots, n \\
C_{[1]}=\sum_{i=1}^{n}\left(p_{i}+r_{i}\right) x_{i 1} & \\
C_{[j]} \geq C_{[j-1]}+\sum_{i=1}^{n} p_{i} x_{i j} & \forall j=2, \ldots, n \\
C_{[j]} \geq \sum_{i=1}^{n}\left(p_{i}+r_{i}\right) x_{i j} & \forall j=2, \ldots, n \\
x_{i j} \in\{0,1\}, \quad C_{[j]} \geq 0 & \tag{7}
\end{array}
$$

A general scheme (intensification)

- Consider a MIP formulation of your problem (crucial choice),
- Let be s^{t} the current solution and $x^{t}=\left[x_{i j}^{t}\right]_{i j}$ the associated values of variables,
- Neighbourhood definition: optimize around s^{t} allowing few variables $x_{i j}^{t}$ to be changed,
- Variable-fixing based intensification:

$$
\begin{equation*}
\min \sum_{j=1}^{n} c_{[j]} \tag{1}
\end{equation*}
$$

subject to

$$
\begin{array}{ll}
\sum_{i=1}^{n} x_{i j}=1 & \forall j=1, \ldots, n \\
\sum_{j=1}^{n} x_{i j}=1 & \forall i=1, \ldots, n \\
C_{[1]}=\sum_{i=1}^{n}\left(p_{i}+r_{i}\right) x_{i 1} & \\
C_{[j]} \geq C_{[j-1]}+\sum_{i=1}^{n} p_{i} x_{i j} & \forall j=2, \ldots, n \\
C_{[j]} \geq \sum_{i=1}^{n}\left(p_{i}+r_{i}\right) x_{i j} & \forall j=2, \ldots, n \\
x_{i j} \in\{0,1\}, \quad C_{[j]} \geq 0 & \tag{7}
\end{array}
$$

A general scheme (intensification)

- Consider a MIP formulation of your problem (crucial choice),
- Let be s^{t} the current solution and $x^{t}=\left[x_{i j}^{t}\right]_{i j}$ the associated values of variables,
- Neighbourhood definition: optimize around s^{t} allowing few variables $x_{i j}^{t}$ to be changed,
- Variable-fixing based intensification:
(1) Determine a subset \mathcal{S}^{t} of variables $x_{i j}$,

$$
\begin{equation*}
\min \sum_{j=1}^{n} c_{[j]} \tag{1}
\end{equation*}
$$

subject to

$$
\begin{array}{ll}
\sum_{i=1}^{n} x_{i j}=1 & \forall j=1, \ldots, n \\
\sum_{j=1}^{n} x_{i j}=1 & \forall i=1, \ldots, n \\
C_{[1]}=\sum_{i=1}^{n}\left(p_{i}+r_{i}\right) x_{i 1} & \\
C_{[j]} \geq C_{[j-1]}+\sum_{i=1}^{n} p_{i} x_{i j} & \forall j=2, \ldots, n \\
C_{[j]} \geq \sum_{i=1}^{n}\left(p_{i}+r_{i}\right) x_{i j} & \forall j=2, \ldots, n \\
x_{i j} \in\{0,1\}, \quad C_{[j]} \geq 0 & \tag{7}
\end{array}
$$

A general scheme (intensification)

- Consider a MIP formulation of your problem (crucial choice),
- Let be s^{t} the current solution and $x^{t}=\left[x_{i j}^{t}\right]_{i j}$ the associated values of variables,
- Neighbourhood definition: optimize around s^{t} allowing few variables $x_{i j}^{t}$ to be changed,
- Variable-fixing based intensification:
(1) Determine a subset \mathcal{S}^{t} of variables $x_{i j}$,
(2) Fix all variables in \mathcal{S}^{t} to their value in x^{t}.

$$
\begin{equation*}
\min \sum_{j=1}^{n} c_{[j]} \tag{1}
\end{equation*}
$$

subject to

$$
\begin{array}{ll}
\sum_{i=1}^{n} x_{i j}=1 & \forall j=1, \ldots, n \\
\sum_{j=1}^{n} x_{i j}=1 & \forall i=1, \ldots, n \\
C_{[1]}=\sum_{i=1}^{n}\left(p_{i}+r_{i}\right) x_{i 1} & \\
C_{[j]} \geq C_{[j-1]}+\sum_{i=1}^{n} p_{i} x_{i j} & \forall j=2, \ldots, n \\
C_{[j]} \geq \sum_{i=1}^{n}\left(p_{i}+r_{i}\right) x_{i j} & \forall j=2, \ldots, n \\
x_{i j} \in\{0,1\}, \quad C_{[j]} \geq 0 & \\
\mathrm{x}_{\mathrm{ij}}=\mathrm{x}_{\mathrm{ij}}^{\mathrm{t}} & \forall \mathrm{x}_{\mathrm{ij}} \in \mathcal{S}^{\mathbf{t}} \\
\hline
\end{array}
$$

A general scheme (intensification)

- Variable-fixing based intensification: VPLS, Relaxation-Induced Neighbourhood Search (RINS), Fix-and-Optimize, ...

A general scheme (intensification)

- Variable-fixing based intensification: VPLS, Relaxation-Induced Neighbourhood Search (RINS), Fix-and-Optimize, ...
- Distance based intensification: local branching,

A general scheme (intensification)

- Variable-fixing based intensification: VPLS, Relaxation-Induced Neighbourhood Search (RINS), Fix-and-Optimize, ...
- Distance based intensification: local branching,
(1) Determine a subset \mathcal{S}^{t} of variables $x_{i j}$,
(2) Add a "distance measure" constraint, e.g. the Hamming distance:

$$
\begin{aligned}
& \min \sum_{j=1}^{n} C_{[j]} \\
& \text { subject to } \\
& \quad(1-7) \\
& \Delta_{\mathcal{S}^{t}}\left(x, x^{t}\right)=\sum_{(i j) \in \mathcal{S}^{t}, x_{i j}^{t}=0} x_{i j}+\sum_{(i j) \in \mathcal{S}^{t}, x_{i j}^{t}=1}\left(1-x_{i j}\right) \leq k
\end{aligned}
$$

with k a given parameter.

VPLS: on which problem?

- We illustrate the Variable Partitioning Local Search (VPLS) on the $F 2 \| \sum_{j} C_{j}$ problem ([4]),
[4] Della Croce, F., A. Grosso, F. Salassa (2014). A matheuristic approach for the two-machine completion time flow shop problem, Annals of Operations Research, 213:67-78.

VPLS: on which problem?

- We illustrate the Variable Partitioning Local Search (VPLS) on the $F 2 \| \sum_{j} C_{j}$ problem ([4]),
- n jobs have to be scheduled on two machines,
[4] Della Croce, F., A. Grosso, F. Salassa (2014). A matheuristic approach for the two-machine completion time flow shop problem, Annals of Operations Research, 213:67-78.

VPLS: on which problem?

- We illustrate the Variable Partitioning Local Search (VPLS) on the $F 2 \| \sum_{j} C_{j}$ problem ([4]),
- n jobs have to be scheduled on two machines,
- Each job j is defined by a processing time $p_{j, i}$ on machine $i=1,2$,
[4] Della Croce, F., A. Grosso, F. Salassa (2014). A matheuristic approach for the two-machine completion time flow shop problem, Annals of Operations Research, 213:67-78.

VPLS: on which problem?

- We illustrate the Variable Partitioning Local Search (VPLS) on the $F 2 \| \sum_{j} C_{j}$ problem ([4]),
- n jobs have to be scheduled on two machines,
- Each job j is defined by a processing time $p_{j, i}$ on machine $i=1,2$,
- Machines are organized in a flowshop setting: each job has to be processed first on machine 1 and next on machine 2,

$C_{j, i}$: completion time of job j on machine i,
[4] Della Croce, F., A. Grosso, F. Salassa (2014). A matheuristic approach for the two-machine completion time flow shop problem, Annals of Operations Research, 213:67-78.

VPLS: on which problem?

- We illustrate the Variable Partitioning Local Search (VPLS) on the $F 2 \| \sum_{j} C_{j}$ problem ([4]),
- n jobs have to be scheduled on two machines,
- Each job j is defined by a processing time $p_{j, i}$ on machine $i=1,2$,
- Machines are organized in a flowshop setting: each job has to be processed first on machine 1 and next on machine 2,

$C_{j, i}$: completion time of job j on machine i,
- A schedule is a permutation σ of the jobs,

VPLS: on which problem?

- We illustrate the Variable Partitioning Local Search (VPLS) on the $F 2 \| \sum_{j} C_{j}$ problem ([4]),
- n jobs have to be scheduled on two machines,
- Each job j is defined by a processing time $p_{j, i}$ on machine $i=1,2$,
- Machines are organized in a flowshop setting: each job has to be processed first on machine 1 and next on machine 2,

$C_{j, i}$: completion time of job j on machine i,
- A schedule is a permutation σ of the jobs,
- This problem is strongly $\mathcal{N} \mathcal{P}$-hard.
[4] Della Croce, F., A. Grosso, F. Salassa (2014). A matheuristic approach for the two-machine completion time flow shop problem, Annals of Operations Research, 213:67-78.

VPLS: the recipe

- Exploit a direct position-based IP formulation: $x_{i j}=1$ is $j o b j$ is in position $i ; 0$ otherwise,
[5] Della Croce, F., Ghirardi, M., Tadei, R. (2004). Recovering Beam Search: enhancing the beam search approach for combinatorial optimization problems. Journal of Heuristics, 10:89-104.

VPLS: the recipe

- Exploit a direct position-based IP formulation: $x_{i j}=1$ is $j o b j$ is in position $i ; 0$ otherwise,
- Initialization: s^{0} is computed by the Recovering Beam Search heuristic of [5],
[5] Della Croce, F., Ghirardi, M., Tadei, R. (2004). Recovering Beam Search: enhancing the beam search approach for combinatorial optimization problems. Journal of Heuristics, 10:89-104.

VPLS: the recipe

- Exploit a direct position-based IP formulation: $x_{i j}=1$ is $j o b j$ is in position i; 0 otherwise,
- Initialization: s^{0} is computed by the Recovering Beam Search heuristic of [5],
- Neighbourhood definition $\mathcal{N}\left(s^{t}\right)$:

$$
\begin{gathered}
\stackrel{\mathrm{h}=12}{ } \\
s^{t}=(1,15, \mid 3,4,2,12,8,10,6,13,9,7,11,5,14) \\
s^{t+1}=(1,15, \mid 3,8,4,12,2,10,6,13,9,7,11,5,14) \\
\\
\\
\mathcal{S}^{t}(\text { random })
\end{gathered}\left\{_{\left\{x_{i j} \mid i=1 . . r-1, r+h+1, \ldots n, j=1 . . n\right\}}\right.
$$

[5] Della Croce, F., Ghirardi, M., Tadei, R. (2004). Recovering Beam Search: enhancing the beam search approach for combinatorial optimization problems. Journal of Heuristics, 10:89-104.

VPLS: the recipe

- Exploit a direct position-based IP formulation: $x_{i j}=1$ is $j o b j$ is in position i; 0 otherwise,
- Initialization: s^{0} is computed by the Recovering Beam Search heuristic of [5],
- Neighbourhood definition $\mathcal{N}\left(s^{t}\right)$:

$$
\begin{gathered}
\stackrel{\mathrm{h}=12}{\longrightarrow} s^{t}=(1,15, \mid 3,4,2,12,8,10,6,13,9,7,11,5,14) \\
s^{t+1}=(1,15,3,8,4,12,2,10,6,13,9,7,11,5,14) \\
\boldsymbol{s}^{t}=\left\{x_{i j} \mid i=1 . . r-1, r+h+1, \ldots n, j=1 . . n\right\}
\end{gathered}
$$

\Rightarrow well suited for permutation problems.
[5] Della Croce, F., Ghirardi, M., Tadei, R. (2004). Recovering Beam Search: enhancing the beam search approach for combinatorial optimization problems. Journal of Heuristics, 10:89-104.

VPLS: the recipe

- Random selection of $r \Leftrightarrow$ random selection of $\mathcal{N}\left(s^{t}\right)$,

VPLS: the recipe

- Random selection of $r \Leftrightarrow$ random selection of $\mathcal{N}\left(s^{t}\right)$,
- First improving neighbourhood,

VPLS: the recipe

- Random selection of $r \Leftrightarrow$ random selection of $\mathcal{N}\left(s^{t}\right)$,
- First improving neighbourhood,
- Stopping condition: a given time limit $T_{\text {stop }}$ is reached or no improving neighbourhood.

VPLS: the cake

- Experimental results on randomly generated instances ([4]):
[6] Czapinski, M. (2010). Parallel simulated annealing with genetic enhancement for flowshop problem with Csum. Computers \& Industrial Engineering, 59, 778-785.

VPLS: the cake

- Experimental results on randomly generated instances ([4]):
- The choice of $h=12$ is a good trade-off between time spent at each intensification phase and quality of the computed solution,
[6] Czapinski, M. (2010). Parallel simulated annealing with genetic enhancement for flowshop problem with Csum. Computers \& Industrial Engineering, 59, 778-785.

VPLS: the cake

- Experimental results on randomly generated instances ([4]):
- The choice of $h=12$ is a good trade-off between time spent at each intensification phase and quality of the computed solution,
- Results on instances with $n=100\left(T_{\text {stop }}=60 s\right)$,

VPLS/LB (\%)	CPLEX $_{t} /$ LB (\%)	VPLS/CPLEX	(\%)
CPLEX $_{t}$-VPLS			
0.26	0.46	0.20	370

[6] Czapinski, M. (2010). Parallel simulated annealing with genetic enhancement for flowshop problem with Csum. Computers \& Industrial Engineering, 59, 778-785.

VPLS: the cake

- Experimental results on randomly generated instances ([4]):
- The choice of $h=12$ is a good trade-off between time spent at each intensification phase and quality of the computed solution,
- Results on instances with $n=100\left(T_{\text {stop }}=60 \mathrm{~s}\right)$,

VPLS/LB (\%)	CPLEX $_{t} / \mathrm{LB}(\%)$	VPLS/CPLEX	
t	(\%)	CPLEX $_{t}$-VPLS	
0.26	0.46	0.20	370

- For $n=300,500$ similar results,
[6] Czapinski, M. (2010). Parallel simulated annealing with genetic enhancement for flowshop problem with Csum. Computers \& Industrial Engineering, 59, 778-785.

VPLS: the cake

- Experimental results on randomly generated instances ([4]):
- The choice of $h=12$ is a good trade-off between time spent at each intensification phase and quality of the computed solution,
- Results on instances with $n=100\left(T_{\text {stop }}=60 \mathrm{~s}\right)$,

VPLS/LB (\%)	CPLEX $_{t} / \mathrm{LB}(\%)$	VPLS/CPLEX	
t	$(\%)$	CPLEX $_{t}$-VPLS	
0.26	0.46	0.20	370

- For $n=300,500$ similar results,
- Best state-of-the-art heuristic for $n \leq 300$,
[6] Czapinski, M. (2010). Parallel simulated annealing with genetic enhancement for flowshop problem with Csum. Computers \& Industrial Engineering, 59, 778-785.

VPLS: the cake

- Experimental results on randomly generated instances ([4]):
- The choice of $h=12$ is a good trade-off between time spent at each intensification phase and quality of the computed solution,
- Results on instances with $n=100\left(T_{\text {stop }}=60 \mathrm{~s}\right)$,

VPLS/LB (\%)	CPLEX $_{t} / \mathrm{LB}(\%)$	VPLS/CPLEX	
t	(\%)	CPLEX $_{t}$-VPLS	
0.26	0.46	0.20	370

- For $n=300,500$ similar results,
- Best state-of-the-art heuristic for $n \leq 300$,
- Competitive with SAwGE ([6]) for $n=500$ (due to computational requirement).
[6] Czapinski, M. (2010). Parallel simulated annealing with genetic enhancement for flowshop problem with Csum. Computers \& Industrial Engineering, 59, 778-785.

VPLS: the cherry on the cake

- What about the impact of the random choice of r ?

VPLS: the cherry on the cake

- What about the impact of the random choice of r ?
- 50 executions of VPLS on an instance with $n=100$ and $T_{\text {stop }}=60$ s,

Scale of values: [200715; 200752].

VPLS: the cherry on the cake

- What about the impact of the random choice of r ?
- 50 executions of VPLS on an instance with $n=100$ and $T_{\text {stop }}=60$ s,

Scale of values: [200715; 200752].

- Time to best: $36 s(\mathrm{avg})$ and 52 s (max),

VPLS: the cherry on the cake

- What about the impact of the random choice of r ?
- 50 executions of VPLS on an instance with $n=100$ and $T_{\text {stop }}=60 \mathrm{~s}$,

Scale of values: [200715; 200752].

- Time to best: $36 s(a v g)$ and $52 s$ (max),
- Improve the strategy for selecting a neighbourhood to explore or introduce diversification.

VPLS: Conclusions

- VPLS can be seen as a very efficient extension of standard local search heuristics,

VPLS: Conclusions

- VPLS can be seen as a very efficient extension of standard local search heuristics,
- The experiments on the $F 2 \| \sum_{j} C_{j}$ problem highlight that:

VPLS: Conclusions

- VPLS can be seen as a very efficient extension of standard local search heuristics,
- The experiments on the $F 2 \| \sum_{j} C_{j}$ problem highlight that:
(1) VPLS can be stuck in local optima,

VPLS: Conclusions

- VPLS can be seen as a very efficient extension of standard local search heuristics,
- The experiments on the $F 2 \| \sum_{j} C_{j}$ problem highlight that:
(1) VPLS can be stuck in local optima,
(2) The random choice of r yields instability in terms of computed solution (alternative: test all r from 0 onwards),

VPLS: Conclusions

- VPLS can be seen as a very efficient extension of standard local search heuristics,
- The experiments on the $F 2 \| \sum_{j} C_{j}$ problem highlight that:
(1) VPLS can be stuck in local optima,
(2) The random choice of r yields instability in terms of computed solution (alternative: test all r from 0 onwards),
(3) The experimental choice of h can be understood, but would not it be better to have a dynamic value of h ?

VPLS: Conclusions

- VPLS can be seen as a very efficient extension of standard local search heuristics,
- The experiments on the $F 2 \| \sum_{j} C_{j}$ problem highlight that:
(1) VPLS can be stuck in local optima,
(2) The random choice of r yields instability in terms of computed solution (alternative: test all r from 0 onwards),
(3) The experimental choice of h can be understood, but would not it be better to have a dynamic value of h ?
(9) High CPU time: explore a lot of useless neighbourhoods.

VPLS: Conclusions

- VPLS can be seen as a very efficient extension of standard local search heuristics,
- The experiments on the $F 2 \| \sum_{j} C_{j}$ problem highlight that:
(1) VPLS can be stuck in local optima,
(2) The random choice of r yields instability in terms of computed solution (alternative: test all r from 0 onwards),
(3) The experimental choice of h can be understood, but would not it be better to have a dynamic value of h ?
(3) High CPU time: explore a lot of useless neighbourhoods.
- Considering windows of positions makes sense for permutation problems,

VPLS: Conclusions

- VPLS can be seen as a very efficient extension of standard local search heuristics,
- The experiments on the $F 2 \| \sum_{j} C_{j}$ problem highlight that:
(1) VPLS can be stuck in local optima,
(2) The random choice of r yields instability in terms of computed solution (alternative: test all r from 0 onwards),
(3) The experimental choice of h can be understood, but would not it be better to have a dynamic value of h ?
(3) High CPU time: explore a lot of useless neighbourhoods.
- Considering windows of positions makes sense for permutation problems,
- Can be extended to problems with assignment... but is it the best choice?

VPLS: Conclusions

- Use of distance based neighbourhood (case of the Hamming distance),

$$
\Delta_{\mathcal{S}^{t}}\left(x, x^{t}\right)=\sum_{(i j) \in \mathcal{S}^{t}, x_{i j}^{t}=0} x_{i j}+\sum_{(i j) \in \mathcal{S}^{t}, x_{i j}^{t}=1}\left(1-x_{i j}\right)
$$

[7] Fischetti M., Monaci, M. (2014). Proximity search for 0-1 mixed-integer convex programming. Journal of Heuristics, 6(20):709-731.

VPLS: Conclusions

- Use of distance based neighbourhood (case of the Hamming distance),

$$
\Delta_{\mathcal{S}^{t}}\left(x, x^{t}\right)=\sum_{(i j) \in \mathcal{S}^{t}, x_{i j}^{t}=0} x_{i j}+\sum_{(i j) \in \mathcal{S}^{t}, x_{i j}^{t}=1}\left(1-x_{i j}\right)
$$

- Neighbourhood definition: $\mathcal{N}\left(s^{t}\right)=\left\{x \mid \Delta_{\mathcal{S}^{t}}\left(x, x^{t}\right) \leq k\right\}$, with k a given parameter,

[7] Fischetti M., Monaci, M. (2014). Proximity search for $0-1$ mixed-integer convex programming. Journal of Heuristics, 6(20):709-731.

VPLS: Conclusions

- Use of distance based neighbourhood (case of the Hamming distance),

$$
\Delta_{\mathcal{S}^{t}}\left(x, x^{t}\right)=\sum_{(i j) \in \mathcal{S}^{t}, x_{i j}^{t}=0} x_{i j}+\sum_{(i j) \in \mathcal{S}^{t}, x_{i j}^{t}=1}\left(1-x_{i j}\right)
$$

- Neighbourhood definition: $\mathcal{N}\left(s^{t}\right)=\left\{x \mid \Delta_{\mathcal{S}^{t}}\left(x, x^{t}\right) \leq k\right\}$, with k a given parameter,
- The neighbourhood is larger than with the windows of position approach \Rightarrow intensification is expected to be more time consuming,

[7] Fischetti M., Monaci, M. (2014). Proximity search for 0-1 mixed-integer convex programming. Journal of Heuristics, 6(20):709-731.

VPLS: Conclusions

- Use of distance based neighbourhood (case of the Hamming distance),

$$
\Delta_{\mathcal{S}^{t}}\left(x, x^{t}\right)=\sum_{(i j) \in \mathcal{S}^{t}, x_{i j}^{t}=0} x_{i j}+\sum_{(i j) \in \mathcal{S}^{t}, x_{i j}^{t}=1}\left(1-x_{i j}\right)
$$

- Neighbourhood definition: $\mathcal{N}\left(s^{t}\right)=\left\{x \mid \Delta_{\mathcal{S}^{t}}\left(x, x^{t}\right) \leq k\right\}$, with k a given parameter,
- The neighbourhood is larger than with the windows of position approach \Rightarrow intensification is expected to be more time consuming,
- VPLS with such a $\mathcal{N}\left(s^{t}\right)$ can be seen as a "dual" version of Proximity Search ([7]).

[7] Fischetti M., Monaci, M. (2014). Proximity search for 0-1 mixed-integer convex programming. Journal of Heuristics, 6(20):709-731.

Outline

(1) Matheuristics at a glance

(2) Matheuristics can be stubborn

(3) Matheuristics can be curious

4 Can Machine Learning be of any help?
(5) Conclusions

A general scheme (diversification)

- All you need is love... and diversification,

A general scheme (diversification)

- All you need is love... and diversification,
- Diversification is just: Get out of this neighbourhood! \Rightarrow Find a solution $x^{t+1} \notin \mathcal{N}\left(s^{t}\right)$.

A general scheme (diversification)

- All you need is love... and diversification,
- Diversification is just: Get out of this neighbourhood! \Rightarrow Find a solution $x^{t+1} \notin \mathcal{N}\left(s^{t}\right)$.
- Easy to define on distance based neighbourhoods: Impose $\Delta_{\mathcal{S}^{t}}\left(x, x^{t}\right)>k$.

A general scheme (diversification)

- All you need is love... and diversification,
- Diversification is just: Get out of this neighbourhood! \Rightarrow Find a solution $x^{t+1} \notin \mathcal{N}\left(s^{t}\right)$.
- Easy to define on distance based neighbourhoods: Impose $\Delta_{\mathcal{S}^{t}}\left(x, x^{t}\right)>k$.
- Local Branching is a perfect example of a matheuristic using both intensification and diversification.

Local Branching: the principles

- Consider the Hamming distance $\Delta_{\mathcal{S}^{t}}\left(x, x^{t}\right)$ on boolean variables $x_{i j}$,

Local Branching: the principles

- Consider the Hamming distance $\Delta_{\mathcal{S}^{t}}\left(x, x^{t}\right)$ on boolean variables $x_{i j}$,
- Introduced in [8] as an exact branching algorithm from which a matheuristic framework is derived,

Local Branching: the principles

- Consider the Hamming distance $\Delta_{\mathcal{S}^{t}}\left(x, x^{t}\right)$ on boolean variables $x_{i j}$,
- Introduced in [8] as an exact branching algorithm from which a matheuristic framework is derived,
- We directly present Local Branching as a matheuristic assuming that:

Local Branching: the principles

- Consider the Hamming distance $\Delta_{\mathcal{S}^{t}}\left(x, x^{t}\right)$ on boolean variables $x_{i j}$,
- Introduced in [8] as an exact branching algorithm from which a matheuristic framework is derived,
- We directly present Local Branching as a matheuristic assuming that:
(1) Each time a MIP has to be solved a time limit is imposed,

Local Branching: the principles

- Consider the Hamming distance $\Delta_{\mathcal{S}^{t}}\left(x, x^{t}\right)$ on boolean variables $x_{i j}$,
- Introduced in [8] as an exact branching algorithm from which a matheuristic framework is derived,
- We directly present Local Branching as a matheuristic assuming that:
(1) Each time a MIP has to be solved a time limit is imposed,
(2) k is the given radius defining the size of the neighbourhood,

Local Branching: the principles

- Consider the Hamming distance $\Delta_{\mathcal{S}^{t}}\left(x, x^{t}\right)$ on boolean variables $x_{i j}$,
- Introduced in [8] as an exact branching algorithm from which a matheuristic framework is derived,
- We directly present Local Branching as a matheuristic assuming that:
(1) Each time a MIP has to be solved a time limit is imposed,
(2) k is the given radius defining the size of the neighbourhood,
(3) ℓ is the given radius used for diversification.

Local Branching: the principles

Stop after reaching a given time limit

Local Branching: Scheduling... you said Scheduling?

- Fischetti and Lodi ([8]) suggest:
- To use a soft diversification before the strong one: try to find a feasible solution in a large neighbourhood, e.g. of size $\frac{3 k}{2}$,
[9] Yang, F., Roel, L. (2021). Scheduling hybrid flow shops with time windows, Journal of Heuristics, 27:133-158.

Local Branching: Scheduling... you said Scheduling?

- Fischetti and Lodi ([8]) suggest:
- To use a soft diversification before the strong one: try to find a feasible solution in a large neighbourhood, e.g. of size $\frac{3 k}{2}$,
- In the strong diversification to consider $\ell=1$,
[9] Yang, F., Roel, L. (2021). Scheduling hybrid flow shops with time windows, Journal of Heuristics, 27:133-158.

Local Branching: Scheduling... you said Scheduling?

- Fischetti and Lodi ([8]) suggest:
- To use a soft diversification before the strong one: try to find a feasible solution in a large neighbourhood, e.g. of size $\frac{3 k}{2}$,
- In the strong diversification to consider $\ell=1$,
- The matheuristic can be also stopped after a maximum number of diversifications is reached.
[9] Yang, F., Roel, L. (2021). Scheduling hybrid flow shops with time windows, Journal of Heuristics, 27:133-158.

Local Branching: Scheduling... you said Scheduling?

- Fischetti and Lodi ([8]) suggest:
- To use a soft diversification before the strong one: try to find a feasible solution in a large neighbourhood, e.g. of size $\frac{3 k}{2}$,
- In the strong diversification to consider $\ell=1$,
- The matheuristic can be also stopped after a maximum number of diversifications is reached.
- Very (very) little applications on scheduling problems:
[9] Yang, F., Roel, L. (2021). Scheduling hybrid flow shops with time windows, Journal of Heuristics, 27:133-158.

Local Branching: Scheduling... you said Scheduling?

- Fischetti and Lodi ([8]) suggest:
- To use a soft diversification before the strong one: try to find a feasible solution in a large neighbourhood, e.g. of size $\frac{3 k}{2}$,
- In the strong diversification to consider $\ell=1$,
- The matheuristic can be also stopped after a maximum number of diversifications is reached.
- Very (very) little applications on scheduling problems:
(1) In [9]: Applied to $F H 2\left|r_{j}, \tilde{d}_{j}\right| \sum_{j} w_{j} C_{j}$. No diversification.
[9] Yang, F., Roel, L. (2021). Scheduling hybrid flow shops with time windows, Journal of Heuristics, 27:133-158.

Local Branching: on which problem?

- Consider the following Graph Edit Distance (GED) problem,
[10] Darwiche, M., Conte, D., Raveaux, R., T'kindt, V. (2019). A local branching heuristic for solving a Graph Edit Distance problem, Computers and Operations Research, 106:225-235.

Local Branching: on which problem?

- Consider the following Graph Edit Distance (GED) problem, - We have two graphs $G=[V ; E]$ and $G^{\prime}=\left[V^{\prime} ; E^{\prime}\right] \ldots$

Graph G^{\prime}
[10] Darwiche, M., Conte, D., Raveaux, R., T'kindt, V. (2019). A local branching heuristic for solving a Graph Edit Distance problem, Computers and Operations Research, 106:225-235.

Local Branching: on which problem?

- Consider the following Graph Edit Distance (GED) problem, - We have two graphs $G=[V ; E]$ and $G^{\prime}=\left[V^{\prime} ; E^{\prime}\right] \ldots$

Graph G^{\prime}
... and we want to know how much G resembles to G^{\prime}.
[10] Darwiche, M., Conte, D., Raveaux, R., T'kindt, V. (2019). A local branching heuristic for solving a Graph Edit Distance problem, Computers and Operations Research, 106:225-235.

Local Branching: on which problem?

- Consider the following Graph Edit Distance (GED) problem, - We have two graphs $G=[V ; E]$ and $G^{\prime}=\left[V^{\prime} ; E^{\prime}\right] \ldots$

Graph G^{\prime}
... and we want to know how much G resembles to G^{\prime}.

- In addition to the graphs, we know:
[10] Darwiche, M., Conte, D., Raveaux, R., T'kindt, V. (2019). A local branching heuristic for solving a Graph Edit Distance problem, Computers and Operations Research, 106:225-235.

Local Branching: on which problem?

- Consider the following Graph Edit Distance (GED) problem, - We have two graphs $G=[V ; E]$ and $G^{\prime}=\left[V^{\prime} ; E^{\prime}\right] \ldots$

Graph G^{\prime}
... and we want to know how much G resembles to G^{\prime}.

- In addition to the graphs, we know:
(1) The cost for deleting or creating a vertex from G : a constant τ,

Local Branching: on which problem?

- Consider the following Graph Edit Distance (GED) problem, - We have two graphs $G=[V ; E]$ and $G^{\prime}=\left[V^{\prime} ; E^{\prime}\right] \ldots$

Graph G^{\prime}
... and we want to know how much G resembles to G^{\prime}.

- In addition to the graphs, we know:
(1) The cost for deleting or creating a vertex from G : a constant τ,
(2) The cost for deleting or creating an edge in G : the same constant τ,
[10] Darwiche, M., Conte, D., Raveaux, R., T'kindt, V. (2019). A local branching heuristic for solving a Graph Edit Distance problem, Computers and Operations Research, 106:225-235.

Local Branching: on which problem?

- Consider the following Graph Edit Distance (GED) problem,
- We have two graphs $G=[V ; E]$ and $G^{\prime}=\left[V^{\prime} ; E^{\prime}\right] \ldots$

Graph G^{\prime}
... and we want to know how much G resembles to G^{\prime}.

- In addition to the graphs, we know:
(1) The cost for deleting or creating a vertex from G : a constant τ,
(2) The cost for deleting or creating an edge in G : the same constant τ,
(3) The cost $c_{j k}$ for matching $j \in V$ with $k \in V^{\prime}$.

Local Branching: on which problem?

- Consider the following Graph Edit Distance (GED) problem,
- We have two graphs $G=[V ; E]$ and $G^{\prime}=\left[V^{\prime} ; E^{\prime}\right] \ldots$

A matching
... and we want to know how much G resembles to G^{\prime}.

- In addition to the graphs, we know:
(1) The cost for deleting or creating a vertex from G : a constant τ,
(2) The cost for deleting or creating an edge in G : the same constant τ,
(3) The cost $c_{j k}$ for matching $j \in V$ with $k \in V^{\prime}$.
- Find the matching of G and G^{\prime} which minimizes the total matching cost,

Local Branching: on which problem?

- Consider the following Graph Edit Distance (GED) problem,
- We have two graphs $G=[V ; E]$ and $G^{\prime}=\left[V^{\prime} ; E^{\prime}\right] \ldots$

A matching
... and we want to know how much G resembles to G^{\prime}.

- In addition to the graphs, we know:
(1) The cost for deleting or creating a vertex from G : a constant τ,
(2) The cost for deleting or creating an edge in G : the same constant τ,
(3) The cost $c_{j k}$ for matching $j \in V$ with $k \in V^{\prime}$.
- Find the matching of G and G^{\prime} which minimizes the total matching cost,
- This problem is strongly $\mathcal{N} \mathcal{P}$-hard.
[10] Darwiche, M., Conte, D., Raveaux, R., T'kindt, V. (2019). A local branching heuristic for solving a Graph Edit Distance problem, Computers and Operations Research, 106:225-235.

Local Branching on the GED: the ingredients

- This is an assignment problem for which we use the following IP formulation ([11]),

$$
\begin{array}{ll}
\text { Minimize } \sum_{i=1}^{N} \sum_{j=1}^{N}\left(c_{i j} x_{i j}+\frac{\tau}{2}\left(s_{i j}+t_{i j}\right)\right) & \\
\text { st } & \\
\sum_{k=1}^{N} A_{i k} x_{k j}-\sum_{c=1}^{N} x_{i c} A_{c j}^{\prime}+s_{i j}-t_{i j}=0 & \forall i, j=1 . . N \\
\sum_{i=1}^{N} x_{i k}=\sum_{j=1}^{N} x_{k j}=1 & \forall k=1 . . N
\end{array}
$$

[11] Justice, D. , Hero, A. (2006). A binary linear programming formulation of the graph edit distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(8):1200-1214.

Local Branching on the GED: the ingredients

- This is an assignment problem for which we use the following IP formulation ([11]),
- Boolean variables $x_{i j}=1$ if vertex $i \in V$ is matched with vertex $j \in V^{\prime}$,

$$
\begin{array}{ll}
\text { Minimize } \sum_{i=1}^{N} \sum_{j=1}^{N}\left(c_{i j} x_{i j}+\frac{\tau}{2}\left(s_{i j}+t_{i j}\right)\right) & \\
\text { st } & \forall i, j=1 . . N \\
\qquad \sum_{k=1}^{N} A_{i k} x_{k j}-\sum_{c=1}^{N} x_{i c} A_{c j}^{\prime}+s_{i j}-t_{i j}=0 & \forall k=1 . . N
\end{array}
$$

[11] Justice, D. , Hero, A. (2006). A binary linear programming formulation of the graph edit distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(8):1200-1214.

Local Branching on the GED: the ingredients

- This is an assignment problem for which we use the following IP formulation ([11]),
- Boolean variables $x_{i j}=1$ if vertex $i \in V$ is matched with vertex $j \in V^{\prime}$,

$$
\text { Minimize } \sum_{i=1}^{N} \sum_{j=1}^{N}\left(c_{i j} x_{i j}+\frac{\tau}{2}\left(s_{i j}+t_{i j}\right)\right)
$$

- Boolean variables $s_{i j}$ and $t_{i j}$
st

$$
\begin{array}{ll}
\sum_{k=1}^{N} A_{i k} x_{k j}-\sum_{c=1}^{N} x_{i c} A_{c j}^{\prime}+s_{i j}-t_{i j}=0 & \forall i, j=1 . . N \\
\sum_{i=1}^{N} x_{i k}=\sum_{j=1}^{N} x_{k j}=1 & \forall k=1 . . N
\end{array}
$$

[11] Justice, D. , Hero, A. (2006). A binary linear programming formulation of the graph edit distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(8):1200-1214.

Local Branching on the GED: the ingredients

- This is an assignment problem for which we use the following IP formulation ([11]),
- Boolean variables $x_{i j}=1$ if vertex $i \in V$ is matched with vertex $j \in V^{\prime}$,
- Boolean variables $s_{i j}$ and $t_{i j}$ represent edge deletion/adding,
- The important variables are
$\operatorname{Minimize} \sum_{i=1}^{N} \sum_{j=1}^{N}\left(c_{i j} x_{i j}+\frac{\tau}{2}\left(s_{i j}+t_{i j}\right)\right)$
st

$$
\begin{array}{ll}
\sum_{k=1}^{N} A_{i k} x_{k j}-\sum_{c=1}^{N} x_{i c} A_{c j}^{\prime}+s_{i j}-t_{i j}=0 & \forall i, j=1 . . N \\
\sum_{i=1}^{N} x_{i k}=\sum_{j=1}^{N} x_{k j}=1 & \forall k=1 . . N
\end{array}
$$ the $x_{i j}$'s \Rightarrow $\mathcal{S}^{t}=\left\{x_{i j} \mid i, j=1 . . N\right\}$.

[11] Justice, D. , Hero, A. (2006). A binary linear programming formulation of the graph edit distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(8):1200-1214.

Local Branching on the GED: the ingredients

- Initialization: x^{0} is computed by solving the IP with a (short) time limit,

Local Branching on the GED: the ingredients

- Initialization: x^{0} is computed by solving the IP with a (short) time limit,
- Neighbourhood definition: $\mathcal{N}\left(s^{t}\right)=\left\{x \mid \Delta_{\mathcal{S}^{t}}\left(x, x^{t}\right) \leq k\right\}$,
- Intensification:
(1) Explore $\mathcal{N}\left(s^{t}\right)$ by solving the IP within a time limit $T_{\text {node }}$,

Local Branching on the GED: the ingredients

- Initialization: x^{0} is computed by solving the IP with a (short) time limit,
- Neighbourhood definition: $\mathcal{N}\left(s^{t}\right)=\left\{x \mid \Delta_{\mathcal{S}^{t}}\left(x, x^{t}\right) \leq k\right\}$,
- Intensification:
(1) Explore $\mathcal{N}\left(s^{t}\right)$ by solving the IP within a time limit $T_{\text {node }}$,
(2) If no improving solutions are found due to the time limit \Rightarrow change the radius to $\frac{k}{2}$ and solve again.

Local Branching on the GED: the ingredients

- Initialization: x^{0} is computed by solving the IP with a (short) time limit,
- Neighbourhood definition: $\mathcal{N}\left(s^{t}\right)=\left\{x \mid \Delta_{\mathcal{S}^{t}}\left(x, x^{t}\right) \leq k\right\}$,
- Intensification:
(1) Explore $\mathcal{N}\left(s^{t}\right)$ by solving the IP within a time limit $T_{\text {node }}$,
(2) If no improving solutions are found due to the time limit \Rightarrow change the radius to $\frac{k}{2}$ and solve again.
- Diversification:

Local Branching on the GED: the ingredients

- Initialization: x^{0} is computed by solving the IP with a (short) time limit,
- Neighbourhood definition: $\mathcal{N}\left(s^{t}\right)=\left\{x \mid \Delta_{\mathcal{S}^{t}}\left(x, x^{t}\right) \leq k\right\}$,
- Intensification:
(1) Explore $\mathcal{N}\left(s^{t}\right)$ by solving the IP within a time limit $T_{\text {node }}$,
(2) If no improving solutions are found due to the time limit \Rightarrow change the radius to $\frac{k}{2}$ and solve again.
- Diversification:
(1) Soft diversification doesn't help,

Local Branching on the GED: the ingredients

- Initialization: x^{0} is computed by solving the IP with a (short) time limit,
- Neighbourhood definition: $\mathcal{N}\left(s^{t}\right)=\left\{x \mid \Delta_{\mathcal{S}^{t}}\left(x, x^{t}\right) \leq k\right\}$,
- Intensification:
(1) Explore $\mathcal{N}\left(s^{t}\right)$ by solving the IP within a time limit $T_{\text {node }}$,
(2) If no improving solutions are found due to the time limit \Rightarrow change the radius to $\frac{k}{2}$ and solve again.
- Diversification:
(1) Soft diversification doesn't help,
(2) Strong diversification on a subset $\mathcal{S}_{l}^{t} \subseteq \mathcal{S}^{t}$ of "important" variables,

Local Branching on the GED: the ingredients

- Diversification:
(1) How to determine \mathcal{S}_{l}^{t} ?

Local Branching on the GED: the ingredients

- Diversification:
(1) How to determine \mathcal{S}_{l}^{t} ?
(2) Independently of x^{t}, compute matrix $M=\left[m_{i j}\right]_{i j}$ with $m_{i j}$ the cost of matching vertex $i \in V$ with $j \in V^{\prime}$,

$$
m_{i j}=c_{i j}+\theta_{i j},
$$

with $\theta_{i j}$ a lower bound on the costs induced by matching the edges of i with those of j (assignment problem).

Local Branching on the GED: the ingredients

- Diversification:
(1) How to determine \mathcal{S}_{l}^{t} ?
(2) Independently of x^{t}, compute matrix $M=\left[m_{i j}\right]_{i j}$ with $m_{i j}$ the cost of matching vertex $i \in V$ with $j \in V^{\prime}$,

$$
m_{i j}=c_{i j}+\theta_{i j},
$$

with $\theta_{i j}$ a lower bound on the costs induced by matching the edges of i with those of j (assignment problem).
(3) We compute standard deviations σ_{i} over all values $m_{i j}, \forall j=1 . .\left|V^{\prime}\right|+1$,

Local Branching on the GED: the ingredients

- Diversification:
(1) How to determine \mathcal{S}_{l}^{t} ?
(2) Independently of x^{t}, compute matrix $M=\left[m_{i j}\right]_{i j}$ with $m_{i j}$ the cost of matching vertex $i \in V$ with $j \in V^{\prime}$,

$$
m_{i j}=c_{i j}+\theta_{i j},
$$

with $\theta_{i j}$ a lower bound on the costs induced by matching the edges of i with those of j (assignment problem).
(3) We compute standard deviations σ_{i} over all values $m_{i j}, \forall j=1$.. $\left|V^{\prime}\right|+1$,
(9) Binary classification of the variables (Nearest Neighbour) to separate the small from the high standard deviation vertices,

Local Branching on the GED: the ingredients

- Diversification:
(1) How to determine \mathcal{S}_{l}^{t} ?
(2) Independently of x^{t}, compute matrix $M=\left[m_{i j}\right]_{i j}$ with $m_{i j}$ the cost of matching vertex $i \in V$ with $j \in V^{\prime}$,

$$
m_{i j}=c_{i j}+\theta_{i j},
$$

with $\theta_{i j}$ a lower bound on the costs induced by matching the edges of i with those of j (assignment problem).
(3) We compute standard deviations σ_{i} over all values $m_{i j}, \forall j=1$.. $\left|V^{\prime}\right|+1$,
(9) Binary classification of the variables (Nearest Neighbour) to separate the small from the high standard deviation vertices,
(5) \mathcal{S}_{l}^{t} contains the variables $x_{i j}$ associated to the the high standard deviation vertices $i \in V$,

Local Branching on the GED: the ingredients

- Diversification:
(1) How to determine \mathcal{S}_{l}^{t} ?
(2) Independently of x^{t}, compute matrix $M=\left[m_{i j}\right]_{i j}$ with $m_{i j}$ the cost of matching vertex $i \in V$ with $j \in V^{\prime}$,

$$
m_{i j}=c_{i j}+\theta_{i j}
$$

with $\theta_{i j}$ a lower bound on the costs induced by matching the edges of i with those of j (assignment problem).
(3) We compute standard deviations σ_{i} over all values $m_{i j}, \forall j=1 . .\left|V^{\prime}\right|+1$,

4 Binary classification of the variables (Nearest Neighbour) to separate the small from the high standard deviation vertices,
(5) \mathcal{S}_{l}^{t} contains the variables $x_{i j}$ associated to the the high standard deviation vertices $i \in V$,
(6) To diversify with solve the IP with the constraint:

$$
\Delta_{\mathcal{S}_{l}^{t}}\left(x, x^{t}\right) \geq \ell
$$

Local Branching on the GED: the cake

- Stopping condition: (max time limit $T_{\text {solve }}$ is reached) or (max number of diversifications Div solve is reached),

Local Branching on the GED: the cake

- Stopping condition: (max time limit $T_{\text {solve }}$ is reached) or (max number of diversifications Div solve is reached),
- Experimental results on two databases of graphs representing chemical molecules,

Local Branching on the GED: the cake

- Stopping condition: (max time limit $T_{\text {solve }}$ is reached) or (max number of diversifications Div solve is reached),
- Experimental results on two databases of graphs representing chemical molecules,
- PAH: 94 graphs with up to 28 vertices (8836 instances).
- $k=20, \ell=30$,
- $T_{\text {node }}=1.75 \mathrm{~s}, T_{\text {solve }}=12.25 \mathrm{~s}$, Div $_{\text {solve }}=3$.

Local Branching on the GED: the cake

- Stopping condition: (max time limit $T_{\text {solve }}$ is reached) or (max number of diversifications Div solve is reached),
- Experimental results on two databases of graphs representing chemical molecules,
- PAH: 94 graphs with up to 28 vertices (8836 instances).
- $k=20, \ell=30$,
- $T_{\text {node }}=1.75 \mathrm{~s}, T_{\text {solve }}=12.25 \mathrm{~s}$, Div $_{\text {solve }}=3$.
- MUTA: 80 graphs from 10 to 70 vertices (6400 instances).
- $k=20, \ell=30$,
- $T_{\text {node }}=180 \mathrm{~s}, T_{\text {solve }}=900 \mathrm{~s}$, Div $_{\text {solve }}=3$.

Local Branching on the GED: the cake

- On PAH instances:
${ }^{1}$ Computed by solving the IP formulation with a time limit of 10 h per instance

Local Branching on the GED: the cake

- On PAH instances:
- Average CPU time: 3 s ,
${ }^{1}$ Computed by solving the IP formulation with a time limit of 10 h per instance

Local Branching on the GED: the cake

- On PAH instances:
- Average CPU time: 3 s ,
- Gap to optimality: $<0.35 \%$,
${ }^{1}$ Computed by solving the IP formulation with a time limit of 10 h per instance

Local Branching on the GED: the cake

- On PAH instances:
- Average CPU time: 3 s ,
- Gap to optimality: $<0.35 \%$,
- 76% of the instances were solved to optimality by local branching.
${ }^{1}$ Computed by solving the IP formulation with a time limit of 10 h per instance

Local Branching on the GED: the cake

- On PAH instances:
- Average CPU time: 3 s ,
- Gap to optimality: $<0.35 \%$,
- 76% of the instances were solved to optimality by local branching.
- On MUTA instances:
${ }^{1}$ Computed by solving the IP formulation with a time limit of 10 h per instance

Local Branching on the GED: the cake

- On PAH instances:
- Average CPU time: 3 s ,
- Gap to optimality: $<0.35 \%$,
- 76% of the instances were solved to optimality by local branching.
- On MUTA instances:
- Average CPU time: 750s on the largest instances,
${ }^{1}$ Computed by solving the IP formulation with a time limit of 10 h per instance

Local Branching on the GED: the cake

- On PAH instances:
- Average CPU time: 3 s ,
- Gap to optimality: $<0.35 \%$,
- 76% of the instances were solved to optimality by local branching.
- On MUTA instances:
- Average CPU time: 750s on the largest instances,
- Gap to the best known solution ${ }^{1}:<0.78 \%$.
\Rightarrow Outperforms all the known heuristics (in 2021) on the GED problem.

[^3]
Matheuristics: a first pit stop

- Very efficient heuristics...

Matheuristics: a first pit stop

- Very efficient heuristics...
- Some points of attention when designing such a heuristic:

Matheuristics: a first pit stop

- Very efficient heuristics...
- Some points of attention when designing such a heuristic:
(1) The choice of the IP formulation is crucial: fast convergence towards an optimal solution,

Matheuristics: a first pit stop

- Very efficient heuristics...
- Some points of attention when designing such a heuristic:
(1) The choice of the IP formulation is crucial: fast convergence towards an optimal solution,
(2) Not necessary to let the IP solver running until it proves optimality: experimental tuning,

Matheuristics: a first pit stop

- Very efficient heuristics...
- Some points of attention when designing such a heuristic:
(1) The choice of the IP formulation is crucial: fast convergence towards an optimal solution,
(2) Not necessary to let the IP solver running until it proves optimality: experimental tuning,
(3) The choice of variables \mathcal{S}^{t} is important: put the variables generating the combinatorics (and maybe not all of them),

Matheuristics: a first pit stop

- Very efficient heuristics...
- Some points of attention when designing such a heuristic:
(1) The choice of the IP formulation is crucial: fast convergence towards an optimal solution,
(2) Not necessary to let the IP solver running until it proves optimality: experimental tuning,
(3) The choice of variables \mathcal{S}^{t} is important: put the variables generating the combinatorics (and maybe not all of them),
(1) Neighbourhood size $(r, h, k \ldots)$: must be fixed to find a good tradeoff between minimizing the number of iterations and total CPU time,

Matheuristics: a first pit stop

- Very efficient heuristics...
- Some points of attention when designing such a heuristic:
(1) The choice of the IP formulation is crucial: fast convergence towards an optimal solution,
(2) Not necessary to let the IP solver running until it proves optimality: experimental tuning,
(3) The choice of variables \mathcal{S}^{t} is important: put the variables generating the combinatorics (and maybe not all of them),
(1) Neighbourhood size $(r, h, k \ldots)$: must be fixed to find a good tradeoff between minimizing the number of iterations and total CPU time,
(0) Diversification seems to be really useful.

Matheuristics: a first pit stop

- ... but time consuming!

Matheuristics: a first pit stop

- ... but time consuming!
- Ways to improve the situation:

Matheuristics: a first pit stop

- ... but time consuming!
- Ways to improve the situation:
(1) Limit the number of "useless" neighbourhoods (VPLS),

Matheuristics: a first pit stop

- ... but time consuming!
- Ways to improve the situation:
(1) Limit the number of "useless" neighbourhoods (VPLS),
(2) Limit the size of the IPs to solve: time and ability to solve large-size instances (VPLS more suitable than Local Branching),

Matheuristics: a first pit stop

- ... but time consuming!
- Ways to improve the situation:
(1) Limit the number of "useless" neighbourhoods (VPLS),
(2) Limit the size of the IPs to solve: time and ability to solve large-size instances (VPLS more suitable than Local Branching),
(3) Adjust the neighbourhood size dynamically.

Outline

(1) Matheuristics at a glance

(2) Matheuristics can be stubborn

(3) Matheuristics can be curious

4 Can Machine Learning be of any help?
(5) Conclusions

Matheuristics and Machine Learning

- Goal: find the most suitable neighbourhoods to explore,

Matheuristics and Machine Learning

- Goal: find the most suitable neighbourhoods to explore,
- We go back to the $F 2 \| \sum_{j} C_{j}$ problem and VPLS,

Matheuristics and Machine Learning

- Goal: find the most suitable neighbourhoods to explore,
- We go back to the $F 2 \| \sum_{j} C_{j}$ problem and VPLS,
- Neighbourhood definition $\mathcal{N}\left(s^{t}\right)$:
$\xrightarrow{n=12}$
$\begin{aligned} & s^{t}=(1,15,3,4,2,12,8,10,6,13,9,7,11,5,14) \\ & s^{t+1}=(1,15,3,8,4,12,2,10,6,13,9,7,11,5,14) \\ & \text { r (random) } \\ & \mathcal{S}^{t}=\left\{x_{i j} \mid i=1 . . r-1, r+h+1, \ldots n, j=1 . . n\right\}\end{aligned}$

Matheuristics and Machine Learning

- Goal: find the most suitable neighbourhoods to explore,
- We go back to the $F 2 \| \sum_{j} C_{j}$ problem and VPLS,
- Neighbourhood definition $\mathcal{N}\left(s^{t}\right)$:
$\xrightarrow{\mathrm{b}=12}$ -

$\mathcal{S}^{t}=\left\{x_{i j} \mid i=1 . . r-1, r+h+1, \ldots n, j=1 . n\right\}$
- The neighbourhoods to explore are defined by r and h,

Matheuristics and Machine Learning

- Goal: find the most suitable neighbourhoods to explore,
- We go back to the $F 2 \| \sum_{j} C_{j}$ problem and VPLS,
- Neighbourhood definition $\mathcal{N}\left(s^{t}\right)$:

- The neighbourhoods to explore are defined by r and h,
- Can we use Machine Learning to predict the best r and h for a given s^{t} ?

The ml-VPLS heuristic

- Ideal goal: to have an oracle (predictor) capable of predicting the values of r and h for a given s^{t},

The ml-VPLS heuristic

- Ideal goal: to have an oracle (predictor) capable of predicting the values of r and h for a given s^{t},
- Reasonable goal: design, for given r, h and s, an oracle predicting if the reoptimization leads to a better s^{t+1},

The ml-VPLS heuristic

- Ideal goal: to have an oracle (predictor) capable of predicting the values of r and h for a given s^{t},
- Reasonable goal: design, for given r, h and s, an oracle predicting if the reoptimization leads to a better s^{t+1},
- Use of structured machine learning to solve this classification problem (features based approach, [40]),

The ml-VPLS heuristic

- To any $x=[r ; h ; s]$, we associate a vector $\phi(x) \in \mathbb{R}^{90}$ of 90 features,

The ml-VPLS heuristic

- To any $x=[r ; h ; s]$, we associate a vector $\phi(x) \in \mathbb{R}^{90}$ of 90 features,
- We want to build a predictor $p\left(\phi(x), \theta^{*}\right) \in[0 ; 1]$, with $\theta^{*} \in \Theta$.

The ml-VPLS heuristic

- To any $x=[r ; h ; s]$, we associate a vector $\phi(x) \in \mathbb{R}^{90}$ of 90 features,
- We want to build a predictor $p\left(\phi(x), \theta^{*}\right) \in[0 ; 1]$, with $\theta^{*} \in \Theta$.
\Rightarrow When $p\left(\phi(x), \theta^{*}\right) \geq 0.5$, we'll assume that it's worth reoptimizing s in the window $[r ; r+h]$.

The ml-VPLS heuristic

- To any $x=[r ; h ; s]$, we associate a vector $\phi(x) \in \mathbb{R}^{90}$ of 90 features,
- We want to build a predictor $p\left(\phi(x), \theta^{*}\right) \in[0 ; 1]$, with $\theta^{*} \in \Theta$.
\Rightarrow When $p\left(\phi(x), \theta^{*}\right) \geq 0.5$, we'll assume that it's worth reoptimizing s in the window $[r ; r+h]$.
- Predictor $p()$ is a neural network and the θ are weights (Deep Learning).

The ml-VPLS heuristic

- A set of 90 features,

Descriptive features:

- $C_{1}, C_{2}, \sum_{j=r}^{r+h} p_{s[j], 1}, \sum_{j=r}^{r+h} p_{s[j], 2}$,
- In $[r ; r+h]$: ratios $\frac{p_{j, 1}}{p_{j, 2}}$, idle times on M_{2}, number of jobs not in SPT order on M_{2}, \ldots
- In $[r+h+1 ; n]$: idle times on M_{2}.

Informative features:

- Upper bound on the gain (on $\sum_{j=r+h+1}^{n} C_{j}$) in rescheduling $[r ; r+h]$,
- Lower bounds on the gain (on $\sum_{j=r}^{r+h} C_{j}$) in rescheduling $[r ; r+h]$,
- Upper bounds on the gain (on $\sum_{j=r}^{r+h} C_{j}$) in rescheduling $[r ; r+h]$,
- Features are normalized and standardized.

The ml-VPLS heuristic

- Predictor (p) is a fully connected neural network:
- It operates in a vector space $\left(\in \mathbb{R}^{90}\right)$.
- Fast inference (prediction time).
- Other models were put to the test such as 1-dimensional CNNs but inference was too slow.
- Number of parameters : 140000
- Number of layers: 7
- Overfitting breakers: Dropout, L1 regularization.

The ml-VPLS heuristic: Building the predictor

- To generate the training, validation and test databases, the same protocol has been used:

	Train	Validation	Test
\#vectors	182590	184680	186086
$\# 1$	35.65%	36.19%	36.33%

Table: Data sets description

The ml-VPLS heuristic: Building the predictor

- To generate the training, validation and test databases, the same protocol has been used:
(1) Randomly generate 1000 instances of the scheduling problem for a given $n \in\{50 ; 100\}$,

	Train	Validation	Test
\#vectors	182590	184680	186086
$\# 1$	35.65%	36.19%	36.33%

Table: Data sets description

The ml-VPLS heuristic: Building the predictor

- To generate the training, validation and test databases, the same protocol has been used:
(1) Randomly generate 1000 instances of the scheduling problem for a given $n \in\{50 ; 100\}$,
(2) Run MATH in which all windows $[r ; r+h]$ are tested. For each $x=[r ; h ; s]$ record $\phi(x)$ and the result $y=1 / 0$,

	Train	Validation	Test
\#vectors	182590	184680	186086
$\# 1$	35.65%	36.19%	36.33%

Table: Data sets description

The ml-VPLS heuristic: After training

Efficiency of ml-VPLS

- We randomly generate 50 instances per problem size and we compare four versions of the matheuristics:

Efficiency of ml-VPLS

- We randomly generate 50 instances per problem size and we compare four versions of the matheuristics:
- VPLS: the original matheuristic,

Efficiency of ml-VPLS

- We randomly generate 50 instances per problem size and we compare four versions of the matheuristics:
- VPLS: the original matheuristic,
- r-VPLS: random decisions,

Efficiency of ml-VPLS

- We randomly generate 50 instances per problem size and we compare four versions of the matheuristics:
- VPLS: the original matheuristic,
- r-VPLS: random decisions,
- ml-VPLS: decisions taken by the predictor,

Efficiency of ml-VPLS

- We randomly generate 50 instances per problem size and we compare four versions of the matheuristics:
- VPLS: the original matheuristic,
- r-VPLS: random decisions,
- ml-VPLS: decisions taken by the predictor,
- ml-VPLS+: optimize the 70% best intervals (predictions) at each iteration.

Efficiency of ml-VPLS

- We randomly generate 50 instances per problem size and we compare four versions of the matheuristics:
- VPLS: the original matheuristic,
- r-VPLS: random decisions,
- ml-VPLS: decisions taken by the predictor,
- ml-VPLS+: optimize the 70% best intervals (predictions) at each iteration.
- On each instance, VPLS, r-VPLS and ml-VPLS are ran 10 times and the average solution value is used to compute statistics,

Efficiency of ml-VPLS

- We randomly generate 50 instances per problem size and we compare four versions of the matheuristics:
- VPLS: the original matheuristic,
- r-VPLS: random decisions,
- ml-VPLS: decisions taken by the predictor,
- ml-VPLS+: optimize the 70% best intervals (predictions) at each iteration.
- On each instance, VPLS, r-VPLS and ml-VPLS are ran 10 times and the average solution value is used to compute statistics,
- A total time limit of 60s per instance for VPLS, r-VPLS and ml-VPLS.

Efficiency of ml-VPLS

	$\delta_{\text {avg }}(\%)$	$\delta_{\max }(\%)$	$T_{\text {avg }}(s)$	$T_{\max }(s)$	$T_{2 b^{\prime}}\left(\% t_{\text {avg }}(s)\right.$	$T_{2 b^{\prime}}$ best $_{\max }(s)$
VPLS	0.0031	0.046	61.13	61.36	5.62	22.18
r-VPLS	0.0034	0.060	61.14	61.39	5.88	24.58
ml-VPLS	0.0187	0.083	61.13	61.43	2.55	14.24
ml-VPLS +	0.0055	0.048	7.38	22.87	3.36	15.13
- Results for $n=50$ jobs -						

Efficiency of ml-VPLS

	$\delta_{\text {avg }}(\%)$	$\delta_{\max }(\%)$	$T_{\text {avg }}(s)$	$T_{\max }(s)$	$T_{2 \text { best }_{\text {avg }}(s)}$	T2best $_{\max }(s)$
VPLS	0.0031	0.046	61.13	61.36	5.62	22.18
r-vPLS	0.0034	0.060	61.14	61.39	5.88	24.58
ml-VPLS	0.0187	0.083	61.13	61.43	2.55	14.24
ml-VPLS+	0.0055	0.048	7.38	22.87	3.36	15.13
- Results for $n=50$ jobs -						

- The trained predictor generalizes well for $n>50$,

Efficiency of ml-VPLS

	$\delta_{\text {avg }}(\%)$	$\delta_{\max }(\%)$	$T_{\text {avg }}(s)$	$T_{\max }(s)$	T2best $_{\text {avg }}(s)$	T2best $_{\max }(s)$
VPLS	0.0031	0.046	61.13	61.36	5.62	22.18
r-vPLS	0.0034	0.060	61.14	61.39	5.88	24.58
ml-VPLS	0.0187	0.083	61.13	61.43	2.55	14.24
ml-VPLS+	0.0055	0.048	7.38	22.87	3.36	15.13
- Results for $n=50$ jobs -						

- The trained predictor generalizes well for $n>50$,
- Machine Learning seems interesting to make VPLS converging faster.

Matheuristics: a second pit stop

- In the design of "faster" matheuristics, Machine Learning seems to be an interesting approach,

Matheuristics: a second pit stop

- In the design of "faster" matheuristics, Machine Learning seems to be an interesting approach,
- To drive the search (choice of relevant neighbourhoods to explore),

Matheuristics: a second pit stop

- In the design of "faster" matheuristics, Machine Learning seems to be an interesting approach,
- To drive the search (choice of relevant neighbourhoods to explore),
- Not enough efficient in the above example but improvement is on-going!

Matheuristics: a second pit stop

- In the design of "faster" matheuristics, Machine Learning seems to be an interesting approach,
- To drive the search (choice of relevant neighbourhoods to explore),
- Not enough efficient in the above example but improvement is on-going!
- What is a "good" neighbourhood?

Matheuristics: a second pit stop

- In the design of "faster" matheuristics, Machine Learning seems to be an interesting approach,
- To drive the search (choice of relevant neighbourhoods to explore),
- Not enough efficient in the above example but improvement is on-going!
- What is a "good" neighbourhood?
- We can also imagine other possible use of Machine Learning: selection of variables (set \mathcal{S}^{t}), value of parameters (like k and ℓ in local branching), ...

Outline

(1) Matheuristics at a glance
(2) Matheuristics can be stubborn
(3) Matheuristics can be curious

4 Can Machine Learning be of any help?
(5) Conclusions

Conclusions

- We have seen two examples of matheuristics as local searches,

Conclusions

- We have seen two examples of matheuristics as local searches,
- A big picture of such approaches,

Dist. based MH	VNS-MH			
		Var. fixing based MH		
Local Branch.	VPLS	POPMUSIC	Fix \& Opt	
$[9][14]$	$[9][12]$	$[4][13][16][21]$	$[18]$	$[19][25][27][29]$
	$[31][35]$	$[34]$		

Conclusions

- We have seen two examples of matheuristics as local searches,
- A big picture of such approaches,

Dist. based MH	VNS-MH	Var. fixing based MH		
Local Branch.		VPLS	POPMUSIC	Fix \& Opt
$[9][14]$		$[4][13][16][21]$	$[18]$	$[19][25][27][29]$
	$[31][35]$	$[34]$		$[30]$

- Matheuristics can be also constructive heuristics or can result from the hybridization of evolutionary algorithms and MIP....

Constructive MH	Evol. Alg. MH	Others
$\left[\begin{array}{c}{[14][17][23][25][26][27]} \\ {[32][35][38]}\end{array}\right.$	$[20][22][24][33][36]$	$[15][22][28][37]$ $[39]$

Conclusions

- (Pro) Matheuristics can be very efficient heuristics for scheduling problems,

Conclusions

- (Pro) Matheuristics can be very efficient heuristics for scheduling problems,
- (Pro) Matheuristics are quite easy to set up,

Conclusions

- (Pro) Matheuristics can be very efficient heuristics for scheduling problems,
- (Pro) Matheuristics are quite easy to set up,
- (Pro) Using non commercial MIP solver is relevant,

Conclusions

- (Pro) Matheuristics can be very efficient heuristics for scheduling problems,
- (Pro) Matheuristics are quite easy to set up,
- (Pro) Using non commercial MIP solver is relevant,
- (Cons) Matheuristics can be time consuming,

Conclusions

- (Pro) Matheuristics can be very efficient heuristics for scheduling problems,
- (Pro) Matheuristics are quite easy to set up,
- (Pro) Using non commercial MIP solver is relevant,
- (Cons) Matheuristics can be time consuming,
- (Cons) Matheuristics can have difficulties to scale up to large size instances (MIP model and CPU time issues),

Conclusions

- (Pro) Matheuristics can be very efficient heuristics for scheduling problems,
- (Pro) Matheuristics are quite easy to set up,
- (Pro) Using non commercial MIP solver is relevant,
- (Cons) Matheuristics can be time consuming,
- (Cons) Matheuristics can have difficulties to scale up to large size instances (MIP model and CPU time issues),
- (Cons) A bunch of parameters to tune.

Conclusions

- (Pro) Matheuristics can be very efficient heuristics for scheduling problems,
- (Pro) Matheuristics are quite easy to set up,
- (Pro) Using non commercial MIP solver is relevant,
- (Cons) Matheuristics can be time consuming,
- (Cons) Matheuristics can have difficulties to scale up to large size instances (MIP model and CPU time issues),
- (Cons) A bunch of parameters to tune.
\Rightarrow Recommendation of the day: if you have a MIP, set up a matheuristic!

Thank you for your attention!

Dist. based MH	VNS-MH	Var. fixing based MH		
Local Branch.		VPLS	POPMUSIC	Fix \& Opt
[9] [14]	$\begin{gathered} {[9][12]} \\ {[31][35]} \\ \hline \end{gathered}$	$\underset{\substack{[4][13][16][21] \\[34]}}{ }$	[18]	$\underset{[30]}{[19]_{[25]}^{[27]}[29]}$

Constructive MH	Evol. Alg. MH	Others
$[14][17][23][25][26][27]$ $[32][35][38]$	$[20][22][24][33][36]$	$[15][22][28][37]$ $[39]$

[4] Della Croce, F., A. Grosso, F. Salassa (2014). A matheuristic approach for the two-machine completion time flow shop problem, Annals of Operations Research, 213:67-78.
[9] Yang, F., Roel, L. (2021). Scheduling hybrid flow shops with time windows, Journal of Heuristics, 27:133-158.
[12] Della Croce, F., Salassa, F. (2014). A variable neighborhood search based matheuristic for nurse rostering problems, Annals of Operations Research, 218:185-199.
[13] Della Croce, F., Salassa, F., T'kindt, V. (2014). A hybrid heuristic approach for single machine scheduling with release times, Computers and Operations Research, 45:7-11.
[14] Smet, P., Wauters, T., Mihaylov, M., Vanden Berghe, G. (2104). This shift minimisation personnel task scheduling problem: A new hybrid approach and computational insights, Omega, 46:64-73.
[15] Lin, S.-W., Ying, K.-C. (2016). Optimization of makespan for no-wait flowshop scheduling problems using efficient matheuristics, Omega, 64:115-125.
[16]. Deghdak, K., T'kindt, V., Bouquard, J.-L. (2016). Scheduling evacuation operations, Journal of Scheduling, 19:467-478.
[17]. Fanjul-Peyro, L., Perea, F. Ruiz, R. (2017). Models and matheuristics for the unrelated parallel machine scheduling problem with additional resources, European Journal of Operational Research, 260:482-493.
[18] Doi, T., Nishi, T., Voss, S. (2018). Two-level decomposition-based matheuristic for airline crew rostering problems with fair working time, European Journal of Operational Research, 267:428-438.
[19] Lindahl, M., Sorensen, M., Stidsen, T.R. (2018). A fix-and-optimize matheuristic for university timetabling, Journal of Heuristics, 24:645:665.
[20] Monch, L., Roob, S. (2018). A matheuristic framework for batch machine scheduling problems with incompatible job families and regular sum objective, Applied Soft Computing, 68:835-846.

Thank you for your attention!

[21] Ta, Q.C., Billaut, J.-C., Bouquard, J.-L. (2018). Matheuristic algorithms for minimizing total tardiness in the m-machine flow-shop scheduling problem, Journal of Intelligent Manufacturing, 29:617-628.
[22] Woo, Y.-B., Kim, S. (2018). Matheuristic approaches for parallel machine scheduling problem with time-dependent deterioration and multiple rate-modifying activities, Computers and Operations Research, 95:97-112.
[23] Meisel, F., Fagerholt, K. (2019). Scheduling two-way ship traffic for the Kiel Canal: Model, extensions and a matheuristic, Computers and Operations Research, 106:119-132.
[24] Ozer, E. A., Sarac, T. (2019). MIP models and a matheuristic algorithm for an identical parallel machine scheduling problem under multiple copies of shared resources constraints, TOP, 27:94-124.
[25] Guimaraes, L., Klabjan, D., Almada-Lobo, B. (2013). Pricing, Relaxing and fixing under lot sizing and scheduling, European Journal of Operational Research, 230:399-411.
[26] Ferreira, D., Morabito, R., Rangel, S. (2009). Solution approaches for the soft drink integrated production lot-sizing and scheduling problem, European Journal of Operational Research, 196:697-706.
[27] James, R.J.W, and Almada-Lobo, B. (2011). Single and parallel machine capacitated lotsizing and scheduling: new iterative MIP-based neighborhood search heuristics, Computers and Operations Research, 38:1816-1825.
[28] Kang, S., Malik, K., Thomas, L.J. (1999). Lotsizing and Scheduling on Parallel Machines with Sequence-Dependent Setup Costs, Management Science, 45(2):131-295.
[29] Goerler, A., Lalla-Ruiz, E., Voss, S. (2020). Late acceptance Hill-Climbing matheuristic for the general lot sizing and scheduling problem with rich constraints, Algorithms, 13(138):1-26.
[30] Thiruvady, D., Blum, C., Ernst, A.T. (2020). Solution merging in matheuristics for resource constrained job scheduling, Algorithms, 13(256):1-31.
[31] Ahmadian, M.M., and Salehipour, A. (2021). The just-in-time job-shop scheduling problem with distinct due-dates for operations, Journal of Heuristics, 27:175-204.
[32] Chandrasekharan, R. C., Smet, P., Wauters, T. (2021). An automatic constructive matheuristic for the shift minimization personnel task scheduling problem, Journal of Heuristics, 27:205-227.
[33] Dang, Q.-V., van Diessen, T., Martagan, T., Adan, I. (2021). A matheuristic for parallel machine scheduling with tool replacement, European Journal of Operational Research, 291:640-660.
[34] Della Croce, F., Grosso, A., Salassa, F. (2021). Minimizing total completion time in the two-machine no-idle no-wait flow shop problem, Journal of Heuristics, 27:159-173.
[35] Dupin, N., Talbi, E.-G. (2021). Matheuristics to optimize refueling and maintenance planning of nuclear power plants, Journal of Heuristics, 27:63-105.

Thank you for your attention!

[36] Guzman, E., Andres, B., Poler, R. (2022). Matheuristic algorithms for Job-Shop scheduling problem using a disjunctive mathematical model, Computers, 11(1).
[37] Singh, N., Dang, Q.-V., Akcay, A., Adan, I., Martagan, T. (2022). A matheuristic for AGV scheduling with battery constraints, European Journal of Operational Research, 298:855-873.
[38] Hong, J., Moon, K., Lee, K., Lee, K., Pinedo, M.L. (2022). An iterated greedy matheuristic for scheduling in steelmaking-continuous casting process, International Journal of Production Research, 60(2):623-643.
[39] Tarhan, I., Oguz, C. (2022). A matheuristic for the generalized order acceptance and scheduling problem, European Journal of Operational Research, 299(1):87-103.

[^0]: [1a] Fischetti, M., Fischetti, M. (2018). Matheuristics. In: Martí R., Pardalos P., Resende M. (eds), Handbook of Heuristics. Springer.
 [1b] Maniezzo, V., Stützle, T., Voß, S. (2009). Matheuristics: Hybridizing Metaheuristics and Mathematical Programming, 1st edn., Springer.
 [1c] Ball, M.O. (2011). Heuristics based on mathematical programming, Surveys in Operations Research and Management Science, 16:21-38.
 [2] Della Croce, F. (2016). MP or not MP: that is the question, Journal of Scheduling, 19:33-42.

[^1]: [1a] Fischetti, M., Fischetti, M. (2018). Matheuristics. In: Martí R., Pardalos P., Resende M. (eds), Handbook of Heuristics. Springer.
 [1b] Maniezzo, V., Stützle, T., Voß, S. (2009). Matheuristics: Hybridizing Metaheuristics and Mathematical Programming, 1st edn., Springer.
 [1c] Ball, M.O. (2011). Heuristics based on mathematical programming, Surveys in Operations Research and Management Science, 16:21-38.
 [2] Della Croce, F. (2016). MP or not MP: that is the question, Journal of Scheduling, 19:33-42.

[^2]: [1a] Fischetti, M., Fischetti, M. (2018). Matheuristics. In: Martí R., Pardalos P., Resende M. (eds), Handbook of Heuristics. Springer.
 [1b] Maniezzo, V., Stützle, T., Voß, S. (2009). Matheuristics: Hybridizing Metaheuristics and Mathematical Programming, 1st edn., Springer.
 [1c] Ball, M.O. (2011). Heuristics based on mathematical programming, Surveys in Operations Research and Management Science, 16:21-38.
 [2] Della Croce, F. (2016). MP or not MP: that is the question, Journal of Scheduling, 19:33-42.

[^3]: ${ }^{1}$ Computed by solving the IP formulation with a time limit of 10 h per instance

