Synchronous flow shop scheduling problems

Sigrid Knust, Stefan Waldherr supported by DFG, KN 512/7-1

November 2022

https://schedulingseminar.com/

Table of Contents

1 Practical motivation: a production problem
2 Synchronous flow shop problems
3 Dominating machines
4 Additional resources and setup times
5 Further model extensions
6 Conclusion

Practical motivation: a production problem

Outline

1 Practical motivation: a production problem
2 Synchronous flow shop problems
3 Dominating machines
4 Additional resources and setup times
5 Further model extensions
6 Conclusion

Production of kitchen elements (WK [14])

Practical motivation: a production problem

Production unit

Production environment

- three parallel production units

■ rotating stations $S=\left\{s_{1}, \ldots, s_{24}\right\}$, 8 at each unit

- 8 fixed workplaces (machines), located around the units (insertion, gluing, drying, ..., removal)

Products and resources

- different products

■ insertion and gluing times relevant, all other times negligible

- orders with associated product, volume, due date

■ limited resources: gluing forms of different types

- (constant) changeover time for change of gluing forms
- goal: find optimal production schedule
- assign each product from the orders to a feasible gluing form
- determine production sequence for each production unit
- minimize number of late orders, total lateness and maximize number of produced items in specified time frame

Practical motivation: a production problem

Outline

1 Practical motivation: a production problem
2 Synchronous flow shop problems
3 Dominating machines
4 Additional resources and setup times
5 Further model extensions
6 Conclusion

Classical permutation flow shop

■ m machines M_{1}, \ldots, M_{m}
■ n jobs $N=\{1, \ldots, n\}$, job j consists of m operations $O_{1 j} \rightarrow O_{2 j} \rightarrow \ldots \rightarrow O_{m j}$

- $O_{i j}$ has to be processed on M_{i} for $p_{i j}$ time units

■ find job permutation (inducing completion times C_{j}) minimizing given objective function f

Synchronous flow shop

- jobs are processed in synchronized cycles

■ synchronous movement of jobs to next machines

- more waiting for jobs and idle times on machines

Literature

- Kouvelis \& Karabati [99]: cyclic scheduling problem, MIP

■ Karabati \& Sayin [03]: cyclic assembly line balancing
■ Soylu et al. [07]: branch-and-bound, heuristics
■ Huang [08]: rotating production units, loading/unloading station, dynamic programming
■ Panwalkar \& Koulamas [19]: schematic representations

- Panwalkar \& Koulamas [20]: complexity of ordered flow shops with $m=3$
■ Weiß et al. [17]: open shop with synchronization
■ our papers [WK14], [WK15], [KKW16] [WK17], [WKB17], [BKW18]

Complexity ([WK15])

■ $F 2 \mid$ synmv $\mid C_{\text {max }}$: equivalent to $F 2 \mid$ no-wait $\mid C_{\text {max }}$ polynomially solvable, $\mathcal{O}(n \log n)$ (Gilmore/Gomory [64])

$M_{1} 1$		3	4	5	5
M_{2}	1	2	3	4	
M_{1}	2	3	4	5	
M_{2}	1	2	3	4	5

■ F3|synmv $\mid C_{\max }$: strongly NP-hard, reduction from 3-PART
■ Fm \mid synmv $\mid \sum C_{j}, L_{\text {max }}$: strongly NP-hard for any fixed $m \geq 2$, reduction from $F 2 \mid$ no-wait $\mid \sum C_{j}, L_{\text {max }}$ (Röck [84])

Practical motivation: a production problem
Synchronous flow shop problems

Dominating machines

Additional resources and setup times
Further model extensions
Conclusion

Outline

1 Practical motivation: a production problem
2 Synchronous flow shop problems
3 Dominating machines
4 Additional resources and setup times
5 Further model extensions
6 Conclusion

Dominating machines ([WK15], [KKW16])

- M_{k} dominates $M_{l}: \min _{j \in N} p_{k j} \geq \max _{j \in N} p_{l j}$

■ machine set $\left\{M_{i} \mid i \in \mathcal{I}\right\}$ dominating: $\min _{i \in \mathcal{I}} \min _{j \in N} p_{i j} \geq \max _{h \notin \mathcal{I}} \max _{j \in N} p_{h j}$

- processing times on non-dominating machines:
- arbitrary values
- job-independent $p_{i j}=p_{i} \forall i \notin \mathcal{I} \rightarrow p_{i j}^{\text {ndom }}=0$

Problems with one dominating machine, $|\mathcal{I}|=1$

- $F \mid$ synmv, $\operatorname{dom}(\mathcal{I}) \mid C_{\text {max }}, \sum C_{j}$: strongly NP-hard
- $F \mid$ synmv, $\operatorname{dom}(\mathcal{I}), p_{i j}^{\text {ndom }}=0 \mid \sum C_{j}$: polynomially solvable, $\mathcal{O}(n \log n)$, SPT rule on dominating machine
- $F \mid$ synmv $, \operatorname{dom}(\mathcal{I}), p_{i j}^{n d o m}=0 \mid L_{\text {max }}$: polynomially solvable, $\mathcal{O}\left(n^{3} \log n\right)$, consider feasibility problem, construct schedule from back to front
- Fm|synmv, $\operatorname{dom}(\mathcal{I}) \mid \sum C_{j}, L_{\text {max }}$: polynomially solvable, additional factor $\mathcal{O}\left(n^{m-1}\right)$
■ $F 2 \mid$ synmv $v, \operatorname{dom}(\mathcal{I}), p_{i j}^{\text {ndom }}=0 \mid \sum w_{j} C_{j}, \sum U_{j}$: open

Practical motivation: a production problem

Problems with two dominating machines, $|\mathcal{I}|=2$

- $F \mid$ synmv, $\operatorname{dom}(\mathcal{I}), p_{i j}^{\text {ndom }}=0 \mid C_{\max }$: strongly NP-hard, reduction from 3-PART
- Fm|synmv, $\operatorname{dom}(\mathcal{I}), p_{i j}^{\text {ndom }}=0 \mid L_{\text {max }}$: strongly NP-hard for any fixed $m \geq 2$ and each set \mathcal{I} with $|\mathcal{I}|=2$
- Fm|synmv, $\operatorname{dom}(k, k+1), p_{i j}^{\text {ndom }}=0 \mid \sum C_{j}$: strongly NP-hard for any fixed $m \geq 2$ and each set of two adjacent dominating machines

Problems with two adjacent dominating machines

■ $F \mid$ synmv, $\operatorname{dom}(k, k+1), p_{i j}^{\text {ndom }}=0\left|C_{\max }: F 2\right|$ no-wait $\mid C_{\max }$ "large TSP" with costs $c_{0 j}=a_{j}, c_{i j}=\max \left\{a_{j}, b_{i}\right\}, c_{j 0}=b_{j}$

a_{1}	$\max \left\{a_{2}, b_{1}\right\}$	$\max \left\{a_{3}, b_{2}\right\}$	$\max \left\{a_{4}, b_{3}\right\}$	$\left\|\max \left\{a_{5}, b_{4}\right\}\right\|$	b_{5}
$M_{1} 1$	2	3	4	5	
M_{2}	1	2	3	4	5

Problems with two non-adjacent dominating machines

■ $F 3 \mid$ synmv $, \operatorname{dom}(1,3), p_{i j}^{\text {ndom }}=0 \mid C_{\max }$: complexity open

a_{1}	$a_{2} \mid$	max $\left\{a_{3}, b_{1}\right\}$	$\mid \max \left\{a_{4}, b_{2}\right\}$	$\left\|\max \left\{a_{5}, b_{3}\right\}\right\|$	max $\left\{a_{6}, b_{4}\right\}$	$\max \left\{a_{7}, b_{5}\right\}$	$\mid \max \left\{a_{8}, b_{6}\right\}$	b_{7}	b_{8}
$M_{1} 1$	2	3	4	5	6	7	8		
M_{2}	1	2	3	4	5	6	7	8	
M_{3}		1	2	3	4	5	6	7	8

a_{1}	max $\left\{a_{3}, b_{1}\right\}$	max $\left\{a_{5}, b_{3}\right\}$	$\max \left\{a_{7}, b_{5}\right\}$	b_{7}
$M_{1} 1$	3	5	7	
M_{2}^{\prime}	1	3	5	7

Problems with two non-adjacent dominating machines

■ VRP with 2 vehicles and special arc costs, each route has to contain half of the nodes

$$
F \mid \text { synmv }, \operatorname{dom}\left(k_{1}, k_{2}\right), p_{i j}^{n d o m}=0 \mid C_{\max }
$$

- VRP with $\kappa=k_{2}-k_{1}$ vehicles, special arc costs $c_{i j}=\max \left\{a_{j}, b_{i}\right\}$, each tour has to contain exactly $\frac{n}{\kappa}$ nodes
- MIP formulation based on VRP formulation:
$x_{i j}=1$, if node j is visited directly after node i in some tour
$u_{i}=$ position of node i in its tour, $1 \leq u_{i} \leq \frac{n}{\kappa}$, MTZ subtour elimination
- important property: if partition of all jobs into subsets for the κ tours is given, optimal sequence for each subset can be calculated with algorithm of Gilmore/Gomory
- solution representation: κ disjoint subsets
- tabu search with swap neighborhood

Practical motivation: a production problem

Computational results of tabu search ([KKW16])

■ Intel Pentium 4 with 3.2 GHz, CPLEX 12.5.0, 30 minutes
■ 182 instances with $20 \leq n \leq 100, \kappa \in\{2,3,4,5\}$, for which optimality could be verified by MIP

	$\kappa=2$	$\kappa=3$	$\kappa=4$	$\kappa=5$
Exactly solved	$80 / 80$	$26 / 35$	$18 / 34$	$22 / 33$
Deviation	0%	0.005%	0.038%	0.049%

average/maximum runtime: $6 / 32$ seconds
■ larger instances with $400 \leq n \leq 900, \kappa \in\{2,3,4,5\}$: average deviation from LP relaxation (all instances): 0.0007 \% average/maximum runtime: 9/28 minutes

Practical motivation: a production problem
Synchronous flow shop problems
Dominating machines

Additional resources and setup times

Further model extensions
Conclusion

Outline

1 Practical motivation: a production problem
2 Synchronous flow shop problems
3 Dominating machines
4 Additional resources and setup times
5 Further model extensions
6 Conclusion

Problem with additional resources ([WK17])

- renewable job resources \mathcal{R} (pallet resources, gluing forms)
$■$ every job j needs a single resource assigned from a subset $\mathcal{R}(j) \subseteq \mathcal{R}$ during its whole processing (from M_{1} to M_{m})
- change of resources needs setup time

■ objective: minimize total production time $=$ sum of all cycle and setup times

Different situations for resources

(R1) all jobs can be processed by all resources $(\mathcal{R}(j)=\mathcal{R}$ for all $j)$
■ no setups necessary

- feasible solution exists $\Leftrightarrow|\mathcal{R}| \geq m$
(R2) the jobs are partitioned into disjoint families \mathcal{F}, where each job in a family can be processed by the same set of resources $(\mathcal{R}(j) \cap \mathcal{R}(h) \neq \emptyset \Rightarrow \mathcal{R}(j)=\mathcal{R}(h))$

■ setup times $s_{f g}$ between families f, g

- feasibility can be checked in $\mathcal{O}(n)$
\square minimizing $C_{\max }: \mathcal{N} \mathcal{P}$-hard even for $m=2$ and $s_{f g}=s$
(R3) the sets $\mathcal{R}(j)$ are arbitrary subsets of \mathcal{R}
- feasibility can be checked with network flow problem

In the following focus on ($R 2$), company has even $s_{f g}=s$.

Decomposition approaches

solution representation: feasible schedule represented by
1 job permutation $\pi=\left(\pi_{1}, \ldots, \pi_{n}\right)$
2 corresponding resource sequence $\varrho=\left(\varrho_{1}, \ldots, \varrho_{n}\right)$ with $\varrho_{i} \in \mathcal{R}\left(\pi_{i}\right)$ for $i=1, \ldots, n$ where no resource $r \in \mathcal{R}$ appears more than once in any m consecutive positions of ϱ

Decomposition D1

1 Determine a job permutation $\pi=\left(\pi_{1}, \ldots, \pi_{n}\right)$ with small sum of cycle times.

Decomposition D1

1 Determine a job permutation $\pi=\left(\pi_{1}, \ldots, \pi_{n}\right)$ with small sum of cycle times. [finding π^{*} minimizing sum of cycle times: $\mathcal{N} \mathcal{P}$-hard for $m \geq 3$, therefore heuristic]

Decomposition D1

1 Determine a job permutation $\pi=\left(\pi_{1}, \ldots, \pi_{n}\right)$ with small sum of cycle times. [finding π^{*} minimizing sum of cycle times: $\mathcal{N P}$-hard for $m \geq 3$, therefore heuristic]
2 Assign a feasible resource $\varrho_{i} \in \mathcal{R}\left(\pi_{i}\right)$ to each π_{i} such that no resource appears more than once in m consecutive positions and the sum of setup times is minimized.

Decomposition D1

1 Determine a job permutation $\pi=\left(\pi_{1}, \ldots, \pi_{n}\right)$ with small sum of cycle times. [finding π^{*} minimizing sum of cycle times: $\mathcal{N} \mathcal{P}$-hard for $m \geq 3$, therefore heuristic]
2 Assign a feasible resource $\varrho_{i} \in \mathcal{R}\left(\pi_{i}\right)$ to each π_{i} such that no resource appears more than once in m consecutive positions and the sum of setup times is minimized. [finding such an optimal resource sequence $\varrho^{*}: \mathcal{O}(n)$]

Decomposition D1

1 Determine a job permutation $\pi=\left(\pi_{1}, \ldots, \pi_{n}\right)$ with small sum of cycle times. [finding π^{*} minimizing sum of cycle times: $\mathcal{N} \mathcal{P}$-hard for $m \geq 3$, therefore heuristic]
2 Assign a feasible resource $\varrho_{i} \in \mathcal{R}\left(\pi_{i}\right)$ to each π_{i} such that no resource appears more than once in m consecutive positions and the sum of setup times is minimized. [finding such an optimal resource sequence $\varrho^{*}: \mathcal{O}(n)$] If no feasible ϱ exists, modify π.

Decomposition D1

1 Determine a job permutation $\pi=\left(\pi_{1}, \ldots, \pi_{n}\right)$ with small sum of cycle times.
[finding π^{*} minimizing sum of cycle times: $\mathcal{N} \mathcal{P}$-hard for $m \geq 3$, therefore heuristic]
2 Assign a feasible resource $\varrho_{i} \in \mathcal{R}\left(\pi_{i}\right)$ to each π_{i} such that no resource appears more than once in m consecutive positions and the sum of setup times is minimized.
[finding such an optimal resource sequence $\varrho^{*}: \mathcal{O}(n)$]
If no feasible ϱ exists, modify π.
Local search: swap two jobs in π, reassign resources

Decomposition D2

1 Determine sequence $\varrho=\left(\varrho_{1}, \ldots, \varrho_{n}\right)$ of resources such that no resource appears more than once in m consecutive positions and the sum of setup times is minimized.

Decomposition D2

1 Determine sequence $\varrho=\left(\varrho_{1}, \ldots, \varrho_{n}\right)$ of resources such that no resource appears more than once in m consecutive positions and the sum of setup times is minimized. [$s_{f g}=s$: bin packing, polynomial in n for fixed m]

Decomposition D2

1 Determine sequence $\varrho=\left(\varrho_{1}, \ldots, \varrho_{n}\right)$ of resources such that no resource appears more than once in m consecutive positions and the sum of setup times is minimized. [$s_{f g}=s$: bin packing, polynomial in n for fixed m]
2 Assign to each resource in the sequence a corresponding job which may be processed by this resource minimizing the sum of cycle times.

Decomposition D2

1 Determine sequence $\varrho=\left(\varrho_{1}, \ldots, \varrho_{n}\right)$ of resources such that no resource appears more than once in m consecutive positions and the sum of setup times is minimized. [$s_{f g}=s$: bin packing, polynomial in n for fixed m]
2 Assign to each resource in the sequence a corresponding job which may be processed by this resource minimizing the sum of cycle times.
[finding a corresponding optimal job permutation π^{*} :
$\mathcal{N} \mathcal{P}$-hard, even for $m=2$, therefore heuristic]

Decomposition D2

1 Determine sequence $\varrho=\left(\varrho_{1}, \ldots, \varrho_{n}\right)$ of resources such that no resource appears more than once in m consecutive positions and the sum of setup times is minimized. [$s_{f g}=s$: bin packing, polynomial in n for fixed m]
2 Assign to each resource in the sequence a corresponding job which may be processed by this resource minimizing the sum of cycle times.
[finding a corresponding optimal job permutation π^{*} :
$\mathcal{N} \mathcal{P}$-hard, even for $m=2$, therefore heuristic]
Local search: modify ϱ, reassign jobs

Test instances

- 120 Taillard instances $(20 \times 5$ up to $500 \times 20)$, resources of type (R2), constant setup times $s_{f g}=s$
- different characteristics: number of job families, availability of resources, small/large setup time
- real-world data: $m=8, n \in[4176,8040],|\mathcal{F}| \in[45,67]$, constant setup time s
- time limit 10 minutes (1 hour) or 100 non-improving iterations

Computational results

■ D2 usually outperfoms D1

- for some instances with small setup D1 better

■ D2 can deal with setup times much better (bin packing achieves optimal solution minimizing number of setups)

- D1 easier to adapt for (R3)

Practical motivation: a production problem
Synchronous flow shop problems
Dominating machines Additional resources and setup times Further model extensions

Outline

1 Practical motivation: a production problem
2 Synchronous flow shop problems
3 Dominating machines
4 Additional resources and setup times
5 Further model extensions
6 Conclusion

Leaving machines idle ([WKB17])

can be modeled by introducing dummy jobs in the sequence

How many dummy jobs are needed?

- $f(k)$: optimal objective value among all schedules where exactly k dummy jobs are introduced
■ $k=0$: normal problem, $k=\infty$: number of dummy jobs unlimited
- What is maximum value of k such that there is an instance with $f(k-1)>f(k)$ and $f(k)=f(\infty)$?
- $C_{\max }(k), \sum C_{j}(k), L_{\max }(k)$ are monotone non-increasing in k since additional dummy jobs can always be inserted at the end of a schedule without increasing the objective value

How many dummy jobs are needed?

- For any regular objective function there exists an optimal schedule with at most $(n-1)(m-1)$ dummy jobs. For the objectives $L_{\text {max }}$ and $\sum C_{j}$ this bound is tight.

■ For $C_{\max }$ there exists an optimal schedule with at most $(n-1)(m-2)$ dummy jobs and this bound is tight.

How much can we gain by leaving machines idle?

Theoretical bounds: k dummy jobs

- objective $C_{\text {max }}$: the relative improvement is bounded by

$$
C_{\max }(0) / C_{\max }(k) \leq \min \{k+1,\lceil m / 2\rceil\},
$$

the absolute improvement $C_{\max }(0)-C_{\max }(k)$ may be arbitrarily large
■ objective $\sum C_{j}$: the relative improvement is bounded by

$$
\sum C_{j}(0) / \sum C_{j}(k) \leq(k+1) \min \{k+1,\lceil m / 2\rceil\}
$$

the absolute improvement may be arbitrarily large

- objective $L_{\text {max }}$: the relative and absolute improvement may be arbitrarily large

How much can we gain by leaving machines idle?

Computational experiments:

- 160 test instances with $n \in\{10,15\}$ and $m \in\{2,3,4,5\}$ solved to optimality by MIPs (once without dummy jobs, once with at most 4)
- 120 Taillard instances, 20×5 up to 500×20 solved heuristically

\# inst.	\# inst. improved			average \% rel. impr. (among impr. inst.)				
	$C_{\max }$	$L_{\max }$	$\sum C_{j}$	$C_{\max }$		$L_{\max }$		$\sum C_{j}$
160	6	41	79	0.06	(1.51)	2.79	(10.9)	0.47
120	31	0	10	0.27	(1.05)	0	(0)	0.10
(1.75)								

results show only rather small gains when using dummy jobs

"Pliability" models ([BKW18])

■ processing times $p_{i j}$ of operations are not fixed in advance

- given only total processing times p_{j} for job j
- determine actual processing times $x_{i j} \geq 0$ satisfying

$$
\sum_{i=1}^{m} x_{i j}=p_{j} \text { for all } j
$$

- more restricted scenario with lower/upper bounds $\underline{p}_{i j}, \bar{p}_{i j}$

$$
\underline{p}_{i j} \leq x_{i j} \leq \bar{p}_{i j} \text { for all } i, j
$$

Example

$$
n=5, m=3, \underline{p}_{i j}=2
$$

j	$p_{1 j}$	$p_{2 j}$	$p_{3 j}$	p_{j}
1	4	7	8	19
2	6	2	2	10
3	10	2	10	22
4	2	4	2	8
5	7	5	4	16

Example

$$
n=5, m=3, \underline{p}_{i j}=2
$$

j	$p_{1 j}$	$p_{2 j}$	$p_{3 j}$	p_{j}
1	4	7	8	19
2	6	2	2	10
3	10	2	10	22
4	2	4	2	8
5	7	5	4	16

a)

b)

$M _ { 1 } \longdiv { 1 }$	2	3		4	5		5	
M_{2}	1	2		3	4			
M_{3}			1	2		3	4	5
2				21				

"Pliability" models

- problem NP-hard, even for 2 machines and no bounds
- distinction: $x_{i j}$ arbitrary real values, integers required only lower bounds: always optimal integer-valued solution
- decomposition approach:

1 local search on set of job permutations π
2 for each π calculate corresponding (optimal) $x_{i j}$

- subproblem of 2nd stage polynomially solvable as LP
- only lower bounds: direct combinatorial algorithm

■ integers required: NP-hard

Practical motivation: a production problem
Synchronous flow shop problems
Dominating machines Additional resources and setup times

Outline

1 Practical motivation: a production problem
2 Synchronous flow shop problems
3 Dominating machines
4 Additional resources and setup times
5 Further model extensions
6 Conclusion

Practical motivation: a production problem

Conclusion

- synchronous flow shop problems
- practical application of production planning
- dominating machines

■ additional job resources and setup times

- leaving machines idle, pliability
- complexity results, polynomially solvable subcases useful for efficient algorithms
■ decomposition approaches, using problem-specific properties
- further research: problems with open complexity

References

[BKW18] M. Bultmann, S. Knust, S. Waldherr (2018): Synchronous flow shop scheduling with pliable jobs, EJOR 270, 943-956.
[GG64] P. Gilmore, R. Gomory (1964): Sequencing a one state-variable machine: A solvable case of the traveling salesman problem, OR 12,655-679.
[H08] K.-L. Huang (2008): Flow shop scheduling with synchronous and asynchronous transportation times, Ph.D. Thesis, The Pennsylvania State University.
[KKW16] M. Kampmeyer, S. Knust, S. Waldherr (2016): Solution algorithms for synchronous flow shop problems with two dominating machines, COR 74, 42-52.
[KS03] S. Karabati, S. Sayin (2003): Assembly line balancing in a mixed-model sequencing environment with synchronous transfers, EJOR 149, 417-429.
[KK99] P. Kouvelis, S. Karabati (1999): Cyclic scheduling in synchronous production lines, IIET 31, 709-719.

References

[PK19] S.S. Panwalkar, C. Koulamas (2019): The evolution of schematic representations of flow shop scheduling problems. JOS 22, 379-391.
[PK20] S.S. Panwalkar, C. Koulamas (2020): Three-stage ordered flow shops with either synchronous flow, blocking or no-idle machines, JOS 23, 145-154.
[R84] H. Röck (1984): Some new results in flow shop scheduling, MMOR 28, 1-16.
[SKA07] B. Soylu, Ö. Kirca, M. Azizoglu (2007): Flow shop-sequencing problem with synchronous transfers and makespan minimization, IJPR 45, 3311-3331.
[W15] S. Waldherr (2015): Scheduling of flow shops with synchronous movement, Ph.D. Thesis, University of Osnabrück.
[WK14] S. Waldherr, S. Knust (2014): Two-stage scheduling in shelf-board production: A case study, IJPR 52, 4078-4092.

References

[WK15] S. Waldherr, S. Knust (2015): Complexity results for flow shop problems with synchronous movement, EJOR 242, 34-44.
[WK17] S. Waldherr, S. Knust (2017): Decomposition algorithms for synchronous flow shop problems with additional resources and setup times, EJOR 259, 847-863.
[WKB17] S. Waldherr, S. Knust, D. Briskorn (2017): Synchronous flow shop problems: How much can we gain by leaving machines idle? Omega 72, 15-24.
[WKS1] C. Weiß, S. Waldherr, S. Knust, N.V. Shakhlevich (2017): Open shop scheduling with synchronization, JOS 20, 557-581.

