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Production of kitchen elements (WK [14])
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Production environment

three parallel production units
rotating stations S = {s1, . . . , s24}, 8 at each unit
8 fixed workplaces (machines), located around the units
(insertion, gluing, drying, . . . , removal)
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Products and resources

different products
insertion and gluing times relevant, all other times negligible
orders with associated product, volume, due date
limited resources: gluing forms of different types
(constant) changeover time for change of gluing forms
goal: find optimal production schedule

assign each product from the orders to a feasible gluing form
determine production sequence for each production unit
minimize number of late orders, total lateness and maximize
number of produced items in specified time frame

Sigrid Knust Synchronous flow shop scheduling problems 7 / 44



Practical motivation: a production problem
Synchronous flow shop problems

Dominating machines
Additional resources and setup times

Further model extensions
Conclusion

Outline

1 Practical motivation: a production problem

2 Synchronous flow shop problems

3 Dominating machines

4 Additional resources and setup times

5 Further model extensions

6 Conclusion

Sigrid Knust Synchronous flow shop scheduling problems 8 / 44



Practical motivation: a production problem
Synchronous flow shop problems

Dominating machines
Additional resources and setup times

Further model extensions
Conclusion

Classical permutation flow shop
m machines M1, . . . ,Mm
n jobs N = {1, . . . , n}, job j consists of m operations
O1j → O2j → . . .→ Omj
Oij has to be processed on Mi for pij time units
find job permutation (inducing completion times Cj)
minimizing given objective function f
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Synchronous flow shop

jobs are processed in synchronized cycles
synchronous movement of jobs to next machines
more waiting for jobs and idle times on machines
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Literature

Kouvelis & Karabati [99]: cyclic scheduling problem, MIP
Karabati & Sayin [03]: cyclic assembly line balancing
Soylu et al. [07]: branch-and-bound, heuristics
Huang [08]: rotating production units, loading/unloading
station, dynamic programming
Panwalkar & Koulamas [19]: schematic representations
Panwalkar & Koulamas [20]: complexity of ordered flow shops
with m = 3
Weiß et al. [17]: open shop with synchronization
our papers [WK14], [WK15], [KKW16] [WK17], [WKB17],
[BKW18]
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Complexity ([WK15])

F2|synmv |Cmax: equivalent to F2|no-wait|Cmax
polynomially solvable, O(n log n) (Gilmore/Gomory [64])

M1

M2

1 2

2 5

3

3

54

41

M1

M2

1 2

2 5

3

3

54

41

F3|synmv |Cmax: strongly NP-hard, reduction from 3-PART
Fm|synmv |

∑
Cj , Lmax: strongly NP-hard for any fixed m ≥ 2,

reduction from F2|no-wait|
∑

Cj , Lmax (Röck [84])
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Dominating machines ([WK15], [KKW16])

Mk dominates Ml : min
j∈N

pkj ≥ max
j∈N

plj

machine set {Mi | i ∈ I} dominating:
min
i∈I

min
j∈N

pij ≥ max
h/∈I

max
j∈N

phj
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processing times on non-dominating machines:
arbitrary values
job-independent pij = pi ∀i /∈ I → pndom

ij = 0
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Problems with one dominating machine, |I| = 1

F |synmv , dom(I)|Cmax,
∑

Cj : strongly NP-hard
F |synmv , dom(I), pndom

ij = 0|
∑

Cj : polynomially solvable,
O(n log n), SPT rule on dominating machine
F |synmv , dom(I), pndom

ij = 0|Lmax: polynomially solvable,
O(n3 log n), consider feasibility problem, construct schedule
from back to front
Fm|synmv , dom(I)|

∑
Cj , Lmax: polynomially solvable,

additional factor O(nm−1)
F2|synmv , dom(I), pndom

ij = 0|
∑

wjCj ,
∑

Uj : open

Sigrid Knust Synchronous flow shop scheduling problems 15 / 44



Practical motivation: a production problem
Synchronous flow shop problems

Dominating machines
Additional resources and setup times

Further model extensions
Conclusion

Problems with two dominating machines, |I| = 2

F |synmv , dom(I), pndom
ij = 0|Cmax: strongly NP-hard,

reduction from 3-PART
Fm|synmv , dom(I), pndom

ij = 0|Lmax: strongly NP-hard
for any fixed m ≥ 2 and each set I with |I| = 2
Fm|synmv , dom(k, k + 1), pndom

ij = 0|
∑

Cj : strongly NP-hard
for any fixed m ≥ 2 and each set of two adjacent dominating
machines
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Problems with two adjacent dominating machines

F |synmv , dom(k, k + 1), pndom
ij = 0|Cmax: F2|no-wait|Cmax

“large TSP” with costs c0j = aj , cij = max{aj , bi}, cj0 = bj
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Problems with two non-adjacent dominating machines

F3|synmv , dom(1, 3), pndom
ij = 0|Cmax: complexity open
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Problems with two non-adjacent dominating machines

VRP with 2 vehicles and special arc costs, each route has to
contain half of the nodes

a1

max {a3, b1}

max {a5, b3}max {a7, b5}

b7

max {a8, b6}max {a6, b4}

a2

max {a4, b2}
b8
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F |synmv , dom(k1, k2), pndom
ij = 0|Cmax

VRP with κ = k2 − k1 vehicles, special arc costs
cij = max{aj , bi}, each tour has to contain exactly n

κ nodes
MIP formulation based on VRP formulation:

xij = 1, if node j is visited directly after node i in some tour

ui = position of node i in its tour, 1 ≤ ui ≤
n
κ
, MTZ subtour elimination

important property: if partition of all jobs into subsets for the
κ tours is given, optimal sequence for each subset can be
calculated with algorithm of Gilmore/Gomory
solution representation: κ disjoint subsets
tabu search with swap neighborhood
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Computational results of tabu search ([KKW16])

Intel Pentium 4 with 3.2 GHz, CPLEX 12.5.0, 30 minutes
182 instances with 20 ≤ n ≤ 100, κ ∈ {2, 3, 4, 5}, for which
optimality could be verified by MIP

κ = 2 κ = 3 κ = 4 κ = 5
Exactly solved 80/80 26/35 18/34 22/33
Deviation 0% 0.005% 0.038% 0.049%

average/maximum runtime: 6/32 seconds
larger instances with 400 ≤ n ≤ 900, κ ∈ {2, 3, 4, 5}:
average deviation from LP relaxation (all instances): 0.0007 %
average/maximum runtime: 9/28 minutes
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Problem with additional resources ([WK17])

renewable job resources R (pallet resources, gluing forms)
every job j needs a single resource assigned from a subset
R(j) ⊆ R during its whole processing (from M1 to Mm)
change of resources needs setup time
objective: minimize total production time = sum of all cycle
and setup times
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Different situations for resources

(R1) all jobs can be processed by all resources (R(j) = R for all j)
no setups necessary
feasible solution exists ⇔ |R| ≥ m

(R2) the jobs are partitioned into disjoint families F , where each
job in a family can be processed by the same set of resources
(R(j) ∩R(h) 6= ∅ ⇒ R(j) = R(h))

setup times sfg between families f , g
feasibility can be checked in O(n)
minimizing Cmax: NP-hard even for m = 2 and sfg = s

(R3) the sets R(j) are arbitrary subsets of R
feasibility can be checked with network flow problem

In the following focus on (R2), company has even sfg = s.
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Decomposition approaches

solution representation: feasible schedule represented by
1 job permutation π = (π1, . . . , πn)
2 corresponding resource sequence % = (%1, . . . , %n) with
%i ∈ R(πi) for i = 1, . . . , n where no resource r ∈ R appears
more than once in any m consecutive positions of %
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Decomposition D1

1 Determine a job permutation π = (π1, . . . , πn) with small sum
of cycle times.

[ finding π∗ minimizing sum of cycle times: NP-hard for
m ≥ 3, therefore heuristic ]

2 Assign a feasible resource %i ∈ R(πi) to each πi such that no
resource appears more than once in m consecutive positions
and the sum of setup times is minimized.
[ finding such an optimal resource sequence %∗: O(n) ]
If no feasible % exists, modify π.

Local search: swap two jobs in π, reassign resources

Sigrid Knust Synchronous flow shop scheduling problems 26 / 44



Practical motivation: a production problem
Synchronous flow shop problems

Dominating machines
Additional resources and setup times

Further model extensions
Conclusion

Decomposition D1

1 Determine a job permutation π = (π1, . . . , πn) with small sum
of cycle times.
[ finding π∗ minimizing sum of cycle times: NP-hard for
m ≥ 3, therefore heuristic ]

2 Assign a feasible resource %i ∈ R(πi) to each πi such that no
resource appears more than once in m consecutive positions
and the sum of setup times is minimized.
[ finding such an optimal resource sequence %∗: O(n) ]
If no feasible % exists, modify π.

Local search: swap two jobs in π, reassign resources

Sigrid Knust Synchronous flow shop scheduling problems 26 / 44



Practical motivation: a production problem
Synchronous flow shop problems

Dominating machines
Additional resources and setup times

Further model extensions
Conclusion

Decomposition D1

1 Determine a job permutation π = (π1, . . . , πn) with small sum
of cycle times.
[ finding π∗ minimizing sum of cycle times: NP-hard for
m ≥ 3, therefore heuristic ]

2 Assign a feasible resource %i ∈ R(πi) to each πi such that no
resource appears more than once in m consecutive positions
and the sum of setup times is minimized.

[ finding such an optimal resource sequence %∗: O(n) ]
If no feasible % exists, modify π.

Local search: swap two jobs in π, reassign resources

Sigrid Knust Synchronous flow shop scheduling problems 26 / 44



Practical motivation: a production problem
Synchronous flow shop problems

Dominating machines
Additional resources and setup times

Further model extensions
Conclusion

Decomposition D1

1 Determine a job permutation π = (π1, . . . , πn) with small sum
of cycle times.
[ finding π∗ minimizing sum of cycle times: NP-hard for
m ≥ 3, therefore heuristic ]

2 Assign a feasible resource %i ∈ R(πi) to each πi such that no
resource appears more than once in m consecutive positions
and the sum of setup times is minimized.
[ finding such an optimal resource sequence %∗: O(n) ]

If no feasible % exists, modify π.
Local search: swap two jobs in π, reassign resources

Sigrid Knust Synchronous flow shop scheduling problems 26 / 44



Practical motivation: a production problem
Synchronous flow shop problems

Dominating machines
Additional resources and setup times

Further model extensions
Conclusion

Decomposition D1

1 Determine a job permutation π = (π1, . . . , πn) with small sum
of cycle times.
[ finding π∗ minimizing sum of cycle times: NP-hard for
m ≥ 3, therefore heuristic ]

2 Assign a feasible resource %i ∈ R(πi) to each πi such that no
resource appears more than once in m consecutive positions
and the sum of setup times is minimized.
[ finding such an optimal resource sequence %∗: O(n) ]
If no feasible % exists, modify π.

Local search: swap two jobs in π, reassign resources

Sigrid Knust Synchronous flow shop scheduling problems 26 / 44



Practical motivation: a production problem
Synchronous flow shop problems

Dominating machines
Additional resources and setup times

Further model extensions
Conclusion

Decomposition D1

1 Determine a job permutation π = (π1, . . . , πn) with small sum
of cycle times.
[ finding π∗ minimizing sum of cycle times: NP-hard for
m ≥ 3, therefore heuristic ]

2 Assign a feasible resource %i ∈ R(πi) to each πi such that no
resource appears more than once in m consecutive positions
and the sum of setup times is minimized.
[ finding such an optimal resource sequence %∗: O(n) ]
If no feasible % exists, modify π.

Local search: swap two jobs in π, reassign resources

Sigrid Knust Synchronous flow shop scheduling problems 26 / 44



Practical motivation: a production problem
Synchronous flow shop problems

Dominating machines
Additional resources and setup times

Further model extensions
Conclusion

Decomposition D2

1 Determine sequence % = (%1, . . . , %n) of resources such that
no resource appears more than once in m consecutive
positions and the sum of setup times is minimized.

[ sfg = s: bin packing, polynomial in n for fixed m ]
2 Assign to each resource in the sequence a corresponding job

which may be processed by this resource minimizing the sum
of cycle times.
[ finding a corresponding optimal job permutation π∗:
NP-hard, even for m = 2, therefore heuristic ]

Local search: modify %, reassign jobs
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Test instances

120 Taillard instances (20× 5 up to 500× 20),
resources of type (R2), constant setup times sfg = s
different characteristics: number of job families, availability of
resources, small/large setup time
real-world data: m = 8, n ∈ [4176, 8040], |F| ∈ [45, 67],
constant setup time s
time limit 10 minutes (1 hour) or 100 non-improving iterations
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Computational results

D2 usually outperfoms D1
for some instances with small setup D1 better
D2 can deal with setup times much better (bin packing
achieves optimal solution minimizing number of setups)
D1 easier to adapt for (R3)
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Leaving machines idle ([WKB17])
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can be modeled by introducing dummy jobs in the sequence
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How many dummy jobs are needed?

f (k): optimal objective value among all schedules where
exactly k dummy jobs are introduced
k = 0: normal problem, k =∞: number of dummy jobs
unlimited
What is maximum value of k such that there is an instance
with f (k − 1) > f (k) and f (k) = f (∞)?
Cmax(k),

∑
Cj(k), Lmax(k) are monotone non-increasing in k

since additional dummy jobs can always be inserted at the end
of a schedule without increasing the objective value
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How many dummy jobs are needed?

For any regular objective function there exists an optimal
schedule with at most (n − 1)(m − 1) dummy jobs.
For the objectives Lmax and

∑
Cj this bound is tight.
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For Cmax there exists an optimal schedule with at most
(n − 1)(m − 2) dummy jobs and this bound is tight.
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How much can we gain by leaving machines idle?
Theoretical bounds: k dummy jobs

objective Cmax: the relative improvement is bounded by

Cmax(0)/Cmax(k) ≤ min{k + 1, dm/2e},

the absolute improvement Cmax(0)− Cmax(k) may be
arbitrarily large
objective

∑
Cj : the relative improvement is bounded by∑

Cj(0)/
∑

Cj(k) ≤ (k + 1) min{k + 1, dm/2e},

the absolute improvement may be arbitrarily large
objective Lmax: the relative and absolute improvement may be
arbitrarily large
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How much can we gain by leaving machines idle?

Computational experiments:
160 test instances with n ∈ {10, 15} and m ∈ {2, 3, 4, 5}
solved to optimality by MIPs (once without dummy jobs, once
with at most 4)
120 Taillard instances, 20× 5 up to 500× 20
solved heuristically

# inst. # inst. improved average % rel. impr. (among impr. inst.)
Cmax Lmax

∑
Cj Cmax Lmax

∑
Cj

160 6 41 79 0.06 (1.51) 2.79 (10.9) 0.47 (0.96)
120 31 0 10 0.27 (1.05) 0 (0) 0.10 (1.75)

results show only rather small gains when using dummy jobs
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“Pliability” models ([BKW18])

processing times pij of operations are not fixed in advance
given only total processing times pj for job j
determine actual processing times xij ≥ 0 satisfying

m∑
i=1

xij = pj for all j

more restricted scenario with lower/upper bounds pij , pij

pij ≤ xij ≤ pij for all i , j
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Example

n = 5, m = 3, pij = 2

j p1j p2j p3j pj
1 4 7 8 19
2 6 2 2 10
3 10 2 10 22
4 2 4 2 8
5 7 5 4 16

M1

M2

M3

1

1

1

2

2

2

3

3

3

4

4

4

4

5

5

5

4 11 21 23 33 38 42

a)
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Example

n = 5, m = 3, pij = 2

j p1j p2j p3j pj
1 4 7 8 19
2 6 2 2 10
3 10 2 10 22
4 2 4 2 8
5 7 5 4 16

M1

M2

M3

1

1

1

2

2

2

3

3

3

4

4

4

4

5

5

5

4 11 21 23 33

M1

M2

M3

1

1

1

2

2

2

3

3

3

4

4

4

4

5

5

5

2 9 19 21 31

38 42

35 37

a)

b)
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“Pliability” models

problem NP-hard, even for 2 machines and no bounds
distinction: xij arbitrary real values, integers required
only lower bounds: always optimal integer-valued solution
decomposition approach:

1 local search on set of job permutations π
2 for each π calculate corresponding (optimal) xij

subproblem of 2nd stage polynomially solvable as LP
only lower bounds: direct combinatorial algorithm
integers required: NP-hard
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Outline

1 Practical motivation: a production problem

2 Synchronous flow shop problems

3 Dominating machines

4 Additional resources and setup times

5 Further model extensions

6 Conclusion
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Conclusion

synchronous flow shop problems
practical application of production planning
dominating machines
additional job resources and setup times
leaving machines idle, pliability
complexity results, polynomially solvable subcases useful for
efficient algorithms
decomposition approaches, using problem-specific properties
further research: problems with open complexity
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