Synchronous flow shop scheduling problems

Sigrid Knust, Stefan Waldherr

supported by DFG, KN 512/7-1

November 2022

https://schedulingseminar.com/

Table of Contents

- 1 Practical motivation: a production problem
- 2 Synchronous flow shop problems
- **3** Dominating machines
- 4 Additional resources and setup times
- 5 Further model extensions

6 Conclusion

Outline

Practical motivation: a production problem

Synchronous flow shop problems Dominating machines Additional resources and setup times Further model extensions Conclusion

1 Practical motivation: a production problem

- 2 Synchronous flow shop problems
- 3 Dominating machines
- 4 Additional resources and setup times
- **5** Further model extensions

6 Conclusion

Synchronous flow shop problems Dominating machines Additional resources and setup times Further model extensions Conclusion

Production of kitchen elements (WK [14])

Synchronous flow shop problems Dominating machines Additional resources and setup times Further model extensions Conclusion

Production unit

Synchronous flow shop problems Dominating machines Additional resources and setup times Further model extensions Conclusion

Production environment

- three parallel production units
- rotating stations $S = \{s_1, \ldots, s_{24}\}$, 8 at each unit
- 8 fixed workplaces (machines), located around the units (insertion, gluing, drying, ..., removal)

Synchronous flow shop problems Dominating machines Additional resources and setup times Further model extensions Conclusion

Products and resources

- different products
- insertion and gluing times relevant, all other times negligible
- orders with associated product, volume, due date
- limited resources: gluing forms of different types
- (constant) changeover time for change of gluing forms
- goal: find optimal production schedule
 - assign each product from the orders to a feasible gluing form
 - determine production sequence for each production unit
 - minimize number of late orders, total lateness and maximize number of produced items in specified time frame

Outline

1 Practical motivation: a production problem

2 Synchronous flow shop problems

- 3 Dominating machines
- 4 Additional resources and setup times
- 5 Further model extensions

6 Conclusion

Classical permutation flow shop

- m machines M_1, \ldots, M_m
- $n \text{ jobs } N = \{1, \dots, n\}$, job j consists of m operations $O_{1j} \rightarrow O_{2j} \rightarrow \ldots \rightarrow O_{mj}$
- O_{ij} has to be processed on M_i for p_{ij} time units
- find job permutation (inducing completion times C_j) minimizing given objective function f

Synchronous flow shop

- jobs are processed in synchronized cycles
- synchronous movement of jobs to next machines
- more waiting for jobs and idle times on machines

Literature

- Kouvelis & Karabati [99]: cyclic scheduling problem, MIP
- Karabati & Sayin [03]: cyclic assembly line balancing
- Soylu et al. [07]: branch-and-bound, heuristics
- Huang [08]: rotating production units, loading/unloading station, dynamic programming
- Panwalkar & Koulamas [19]: schematic representations
- Panwalkar & Koulamas [20]: complexity of ordered flow shops with m = 3
- Weiß et al. [17]: open shop with synchronization
- our papers [WK14], [WK15], [KKW16] [WK17], [WKB17], [BKW18]

Complexity ([WK15])

■ F2|synmv|C_{max}: equivalent to F2|no-wait|C_{max} polynomially solvable, $O(n \log n)$ (Gilmore/Gomory [64])

- $F3|synmv|C_{max}$: strongly NP-hard, reduction from 3-PART
- *Fm*|*synmv*|∑ C_j, L_{max}: strongly NP-hard for any fixed m ≥ 2, reduction from F2|no-wait|∑ C_j, L_{max} (Röck [84])

Outline

- 1 Practical motivation: a production problem
- 2 Synchronous flow shop problems
- 3 Dominating machines
- 4 Additional resources and setup times
- **5** Further model extensions

6 Conclusion

Dominating machines ([WK15], [KKW16])

- M_k dominates M_l : $\min_{j \in N} p_{kj} \ge \max_{j \in N} p_{lj}$
- machine set $\{M_i \mid i \in \mathcal{I}\}$ dominating: min min $p_{ij} \ge \max_{h \notin \mathcal{I}} \max_{j \in N} p_{hj}$

- processing times on non-dominating machines:
 - arbitrary values
 - job-independent $p_{ij} = p_i \ \forall i \notin \mathcal{I} \rightarrow p_{ij}^{ndom} = 0$

Problems with one dominating machine, $|\mathcal{I}|=1$

- $F|synmv, dom(\mathcal{I})|C_{max}, \sum C_j$: strongly NP-hard
- $F|synmv, dom(\mathcal{I}), p_{ij}^{ndom} = 0| \sum C_j$: polynomially solvable, $\mathcal{O}(n \log n)$, SPT rule on dominating machine
- F|synmv, dom(I), p_{ij}^{ndom} = 0|L_{max}: polynomially solvable, *O*(n³ log n), consider feasibility problem, construct schedule from back to front
- Fm|synmv, dom(I)| ∑ C_j, L_{max}: polynomially solvable, additional factor O(n^{m-1})

• $F2|synmv, dom(\mathcal{I}), p_{ij}^{ndom} = 0|\sum w_j C_j, \sum U_j$: open

Problems with two dominating machines, $|\mathcal{I}|=2$

- F|synmv, dom(I), p_{ij}^{ndom} = 0|C_{max}: strongly NP-hard, reduction from 3-PART
- *Fm*|*synmv*, *dom*(*I*), *p*^{ndom}_{ij} = 0|*L*_{max}: strongly NP-hard for any fixed *m* ≥ 2 and each set *I* with |*I*| = 2
- *Fm*|*synmv*, *dom*(*k*, *k* + 1), *p_{ij}^{ndom}* = 0| ∑ *C_j*: strongly NP-hard for any fixed *m* ≥ 2 and each set of two adjacent dominating machines

Problems with two adjacent dominating machines

■ $F|synmv, dom(k, k + 1), p_{ij}^{ndom} = 0|C_{max}$: $F2|no-wait|C_{max}$ "large TSP" with costs $c_{0j} = a_j$, $c_{ij} = \max\{a_j, b_i\}$, $c_{j0} = b_j$

Problems with two non-adjacent dominating machines

■ F3|synmv, dom(1,3), p_{ij}^{ndom} = 0|C_{max}: complexity open

Problems with two non-adjacent dominating machines

 VRP with 2 vehicles and special arc costs, each route has to contain half of the nodes

 $F|synmv, dom(k_1, k_2), p_{ij}^{ndom} = 0|C_{\max}|$

VRP with κ = k₂ − k₁ vehicles, special arc costs c_{ij} = max{a_j, b_i}, each tour has to contain exactly n/κ nodes
 MIP formulation based on VRP formulation:

 $x_{ij} = 1$, if node j is visited directly after node i in some tour

 u_i = position of node *i* in its tour, $1 \le u_i \le \frac{n}{\kappa}$, MTZ subtour elimination

- important property: if partition of all jobs into subsets for the κ tours is given, optimal sequence for each subset can be calculated with algorithm of Gilmore/Gomory
- solution representation: κ disjoint subsets
- tabu search with swap neighborhood

Computational results of tabu search ([KKW16])

- Intel Pentium 4 with 3.2 GHz, CPLEX 12.5.0, 30 minutes
- 182 instances with $20 \le n \le 100$, $\kappa \in \{2, 3, 4, 5\}$, for which optimality could be verified by MIP

	$\kappa = 2$	$\kappa = 3$	$\kappa = 4$	$\kappa = 5$
Exactly solved	80/80	26/35	18/34	22/33
Deviation	0%	0.005 %	0.038 %	0.049 %

average/maximum runtime: 6/32 seconds

 larger instances with 400 ≤ n ≤ 900, κ ∈ {2,3,4,5}: average deviation from LP relaxation (all instances): 0.0007 % average/maximum runtime: 9/28 minutes

Outline

- 1 Practical motivation: a production problem
- 2 Synchronous flow shop problems
- 3 Dominating machines
- 4 Additional resources and setup times
- 5 Further model extensions

6 Conclusion

Problem with additional resources ([WK17])

- renewable job resources *R* (pallet resources, gluing forms)
- every job j needs a single resource assigned from a subset $\mathcal{R}(j) \subseteq \mathcal{R}$ during its whole processing (from M_1 to M_m)
- change of resources needs setup time
- objective: minimize total production time = sum of all cycle and setup times

Different situations for resources

(R1) all jobs can be processed by all resources ($\mathcal{R}(j) = \mathcal{R}$ for all j)

- no setups necessary
- feasible solution exists $\Leftrightarrow |\mathcal{R}| \geq m$
- (R2) the jobs are partitioned into disjoint families \mathcal{F} , where each job in a family can be processed by the same set of resources $(\mathcal{R}(j) \cap \mathcal{R}(h) \neq \emptyset \Rightarrow \mathcal{R}(j) = \mathcal{R}(h))$

• setup times s_{fg} between families f, g

• feasibility can be checked in $\mathcal{O}(n)$

• minimizing C_{\max} : \mathcal{NP} -hard even for m = 2 and $s_{fg} = s$

(R3) the sets $\mathcal{R}(j)$ are arbitrary subsets of \mathcal{R}

feasibility can be checked with network flow problem

In the following focus on (R2), company has even $s_{fg} = s$.

Decomposition approaches

solution representation: feasible schedule represented by

- **1** job permutation $\pi = (\pi_1, \ldots, \pi_n)$
- **2** corresponding resource sequence $\varrho = (\varrho_1, \dots, \varrho_n)$ with $\varrho_i \in \mathcal{R}(\pi_i)$ for $i = 1, \dots, n$ where no resource $r \in \mathcal{R}$ appears more than once in any *m* consecutive positions of ρ

Decomposition D1

1 Determine a job permutation $\pi = (\pi_1, \ldots, \pi_n)$ with small sum of cycle times.

Decomposition D1

Determine a job permutation π = (π₁,...,π_n) with small sum of cycle times.
 [finding π* minimizing sum of cycle times: *NP*-hard for m ≥ 3, therefore heuristic]

Decomposition D1

- Determine a job permutation π = (π₁,...,π_n) with small sum of cycle times.
 [finding π* minimizing sum of cycle times: *NP*-hard for m ≥ 3, therefore heuristic]
- **2** Assign a feasible resource $\varrho_i \in \mathcal{R}(\pi_i)$ to each π_i such that no resource appears more than once in *m* consecutive positions and the sum of setup times is minimized.

Decomposition D1

- Determine a job permutation π = (π₁,...,π_n) with small sum of cycle times.
 [finding π* minimizing sum of cycle times: *NP*-hard for m ≥ 3, therefore heuristic]
- 2 Assign a feasible resource $\varrho_i \in \mathcal{R}(\pi_i)$ to each π_i such that no resource appears more than once in *m* consecutive positions and the sum of setup times is minimized.

[finding such an optimal resource sequence $\varrho^*: \mathcal{O}(n)$]

Decomposition D1

- Determine a job permutation π = (π₁,...,π_n) with small sum of cycle times.
 [finding π* minimizing sum of cycle times: *NP*-hard for m ≥ 3, therefore heuristic]
- 2 Assign a feasible resource ρ_i ∈ R(π_i) to each π_i such that no resource appears more than once in *m* consecutive positions and the sum of setup times is minimized.
 [finding such an optimal resource sequence ρ*: O(n)]
 If no feasible ρ exists, modify π.

Decomposition D1

- Determine a job permutation π = (π₁,...,π_n) with small sum of cycle times.
 [finding π* minimizing sum of cycle times: *NP*-hard for m ≥ 3, therefore heuristic]
- Assign a feasible resource ρ_i ∈ R(π_i) to each π_i such that no resource appears more than once in *m* consecutive positions and the sum of setup times is minimized.
 [finding such an optimal resource sequence ρ*: O(n)]
 If no feasible ρ exists, modify π.

Local search: swap two jobs in π , reassign resources

Decomposition D2

Determine sequence \(\rho = (\rho_1, \ldots, \rho_n)\) of resources such that no resource appears more than once in m consecutive positions and the sum of setup times is minimized.

Decomposition D2

Determine sequence \(\rho = (\rho_1, \ldots, \rho_n)\) of resources such that no resource appears more than once in m consecutive positions and the sum of setup times is minimized.
 [s_{fg} = s: bin packing, polynomial in n for fixed m]

Decomposition D2

- Determine sequence \(\rho = (\rho_1, \ldots, \rho_n)\) of resources such that no resource appears more than once in m consecutive positions and the sum of setup times is minimized.
 [s_{fg} = s: bin packing, polynomial in n for fixed m]
- Assign to each resource in the sequence a corresponding job which may be processed by this resource minimizing the sum of cycle times.

Decomposition D2

- Determine sequence \(\rho = (\rho_1, \ldots, \rho_n)\) of resources such that no resource appears more than once in m consecutive positions and the sum of setup times is minimized.
 [s_{fg} = s: bin packing, polynomial in n for fixed m]
- 2 Assign to each resource in the sequence a corresponding job which may be processed by this resource minimizing the sum of cycle times.

[finding a corresponding optimal job permutation π^* :

 \mathcal{NP} -hard, even for m = 2, therefore heuristic]

Decomposition D2

- Determine sequence \(\rho = (\rho_1, \ldots, \rho_n)\) of resources such that no resource appears more than once in m consecutive positions and the sum of setup times is minimized.
 [s_{fg} = s: bin packing, polynomial in n for fixed m]
- Assign to each resource in the sequence a corresponding job which may be processed by this resource minimizing the sum of cycle times.

[finding a corresponding optimal job permutation π^* :

 \mathcal{NP} -hard, even for m = 2, therefore heuristic]

Local search: modify ρ , reassign jobs

Test instances

- 120 Taillard instances (20 × 5 up to 500 × 20), resources of type (R2), constant setup times *s*_{fg} = *s*
- different characteristics: number of job families, availability of resources, small/large setup time
- real-world data: m = 8, $n \in [4176, 8040]$, $|\mathcal{F}| \in [45, 67]$, constant setup time s
- time limit 10 minutes (1 hour) or 100 non-improving iterations

Computational results

- D2 usually outperforms D1
- for some instances with small setup D1 better
- D2 can deal with setup times much better (bin packing achieves optimal solution minimizing number of setups)
- D1 easier to adapt for (R3)

Outline

- 1 Practical motivation: a production problem
- 2 Synchronous flow shop problems
- 3 Dominating machines
- 4 Additional resources and setup times
- 5 Further model extensions

6 Conclusion

Conclusion

Leaving machines idle ([WKB17])

can be modeled by introducing dummy jobs in the sequence

How many dummy jobs are needed?

- f(k): optimal objective value among all schedules where exactly k dummy jobs are introduced
- k = 0: normal problem, $k = \infty$: number of dummy jobs unlimited
- What is maximum value of k such that there is an instance with f(k − 1) > f(k) and f(k) = f(∞)?
- C_{max}(k), ∑ C_j(k), L_{max}(k) are monotone non-increasing in k since additional dummy jobs can always be inserted at the end of a schedule without increasing the objective value

How many dummy jobs are needed?

For any regular objective function there exists an optimal schedule with at most (n − 1)(m − 1) dummy jobs.
 For the objectives L_{max} and ∑ C_j this bound is tight.

For C_{\max} there exists an optimal schedule with at most (n-1)(m-2) dummy jobs and this bound is tight.

How much can we gain by leaving machines idle?

Theoretical bounds: k dummy jobs

• objective C_{\max} : the relative improvement is bounded by

$$C_{\max}(0)/C_{\max}(k) \leq \min\{k+1, \lceil m/2 \rceil\},$$

the absolute improvement $C_{\max}(0) - C_{\max}(k)$ may be arbitrarily large

• objective $\sum C_j$: the relative improvement is bounded by

$$\sum C_j(0) / \sum C_j(k) \le (k+1) \min\{k+1, \lceil m/2 \rceil\},\$$

the absolute improvement may be arbitrarily large

 objective L_{max}: the relative and absolute improvement may be arbitrarily large

How much can we gain by leaving machines idle?

Computational experiments:

- 160 test instances with $n \in \{10, 15\}$ and $m \in \{2, 3, 4, 5\}$ solved to optimality by MIPs (once without dummy jobs, once with at most 4)
- 120 Taillard instances, 20 × 5 up to 500 × 20 solved heuristically

# inst.	# inst. improved			average % rel. impr. (among impr. inst.)					
	C _{max}	L _{max}	$\sum C_j$	C _{max}		L _{max}		$\sum C_j$	
160	6	41	79	0.06	(1.51)	2.79	(10.9)	0.47	(0.96)
120	31	0	10	0.27	(1.05)	0	(0)	0.10	(1.75)

results show only rather small gains when using dummy jobs

"Pliability" models ([BKW18])

- processing times p_{ij} of operations are not fixed in advance
- given only total processing times p_j for job j
- determine actual processing times $x_{ij} \ge 0$ satisfying

$$\sum_{i=1}^m x_{ij} = p_j \text{ for all } j$$

• more restricted scenario with lower/upper bounds $\underline{p}_{ij}, \overline{p}_{ij}$

$$\underline{p}_{ij} \leq x_{ij} \leq \overline{p}_{ij} \text{ for all } i, j$$

Example

$$n = 5, m = 3, \underline{p}_{ij} = 2$$

j	p_{1j}	p_{2j}	p 3j	p_j
1	4	7	8	19
2	6	2	2	10
3	10	2	10	22
4	2	4	2	8
5	7	5	4	16

Example

$$n = 5, m = 3, \underline{p}_{ij} = 2$$

j	p_{1j}	p_{2j}	p_{3j}	p_j
1	4	7	8	19
2	6	2	2	10
3	10	2	10	22
4	2	4	2	8
5	7	5	4	16

"Pliability" models

- problem NP-hard, even for 2 machines and no bounds
- distinction: x_{ij} arbitrary real values, integers required only lower bounds: always optimal integer-valued solution
- decomposition approach:
 - **1** local search on set of job permutations π
 - **2** for each π calculate corresponding (optimal) x_{ij}
 - subproblem of 2nd stage polynomially solvable as LP
 - only lower bounds: direct combinatorial algorithm
 - integers required: NP-hard

Outline

- 1 Practical motivation: a production problem
- 2 Synchronous flow shop problems
- 3 Dominating machines
- 4 Additional resources and setup times
- 5 Further model extensions

6 Conclusion

Conclusion

- synchronous flow shop problems
- practical application of production planning
- dominating machines
- additional job resources and setup times
- leaving machines idle, pliability
- complexity results, polynomially solvable subcases useful for efficient algorithms
- decomposition approaches, using problem-specific properties
- further research: problems with open complexity

References

- [BKW18] M. Bultmann, S. Knust, S. Waldherr (2018): Synchronous flow shop scheduling with pliable jobs, EJOR 270, 943-956.
 - [GG64] P. Gilmore, R. Gomory (1964): Sequencing a one state-variable machine: A solvable case of the traveling salesman problem, OR 12,655-679.
 - [H08] K.-L. Huang (2008): Flow shop scheduling with synchronous and asynchronous transportation times, Ph.D. Thesis, The Pennsylvania State University.
- [KKW16] M. Kampmeyer, S. Knust, S. Waldherr (2016): Solution algorithms for synchronous flow shop problems with two dominating machines, COR 74, 42-52.
 - [KS03] S. Karabati, S. Sayin (2003): Assembly line balancing in a mixed-model sequencing environment with synchronous transfers, EJOR 149, 417-429.
 - [KK99] P. Kouvelis, S. Karabati (1999): Cyclic scheduling in synchronous production lines, IIET 31, 709-719.

References

- [PK19] S.S. Panwalkar, C. Koulamas (2019): The evolution of schematic representations of flow shop scheduling problems. JOS 22, 379-391.
- [PK20] S.S. Panwalkar, C. Koulamas (2020): Three-stage ordered flow shops with either synchronous flow, blocking or no-idle machines, JOS 23, 145-154.
 - [R84] H. Röck (1984): Some new results in flow shop scheduling, MMOR 28, 1-16.
- [SKA07] B. Soylu, Ö. Kirca, M. Azizoglu (2007): Flow shop-sequencing problem with synchronous transfers and makespan minimization, IJPR 45, 3311-3331.
 - [W15] S. Waldherr (2015): Scheduling of flow shops with synchronous movement, Ph.D. Thesis, University of Osnabrück.
- [WK14] S. Waldherr, S. Knust (2014): Two-stage scheduling in shelf-board production: A case study, IJPR 52, 4078-4092.

References

- [WK15] S. Waldherr, S. Knust (2015): Complexity results for flow shop problems with synchronous movement, EJOR 242, 34-44.
- [WK17] S. Waldherr, S. Knust (2017): Decomposition algorithms for synchronous flow shop problems with additional resources and setup times, EJOR 259, 847-863.
- [WKB17] S. Waldherr, S. Knust, D. Briskorn (2017): Synchronous flow shop problems: How much can we gain by leaving machines idle? Omega 72, 15-24.
 - [WKS1] C. Weiß, S. Waldherr, S. Knust, N.V. Shakhlevich (2017): Open shop scheduling with synchronization, JOS 20, 557-581.