

Proactive personnel rostering

Generating robust rosters to cope with employee absenteeism

Pieter Smet

KU Leuven, Department of Computer Science Numerical Analysis and Applied Mathematics Research Unit

Scheduling seminar – 20 March 2024

Outline

- 1. Personnel rostering
- 2. Reactive and proactive rostering
- 3. Quantifying and enforcing roster robustness
- 4. Data-driven robust rostering

Context

Workplace absences 'at 10-year high' with stress the major cause of long-term sickness

COVID-19 and cost of living worries are all seen as factors behind a deterioration in

Stressed out and burned out: Younger nurses feel strain of nursing shortage

Gen Z nurses are far less likely to encourage their peers to go into nursing.

📀 global | **geneva**

Global truck driver shortage to double by 2028, says new IRU report

20 NOV 2023 · PEOPLE

Over 3 million truck driver positions are currently unfilled in 36 countries studied

Workers are historically stressed out and disengaged

By Jordan Valinsky, CNN

THE BIG QUESTION Economy | Business and Economy

Will a four-day work week solve Germany's labour shortage?

Counterintuitively, a new German experiment is testing whether working less can actually help overcome a labour crunch.

No. of N shifts

	Mon	Tue	Wed	Thu	Fri	Sat	Sun
Employee 1							
Employee 2							
Employee 3							
Employee 4							
No. of E shifts	0/1	0/1	0/1	0/1	0/1	0/1	0/1
No. of L shifts	0/1	0/1	0/1	0/1	0/1	0/1	0/1

0/1

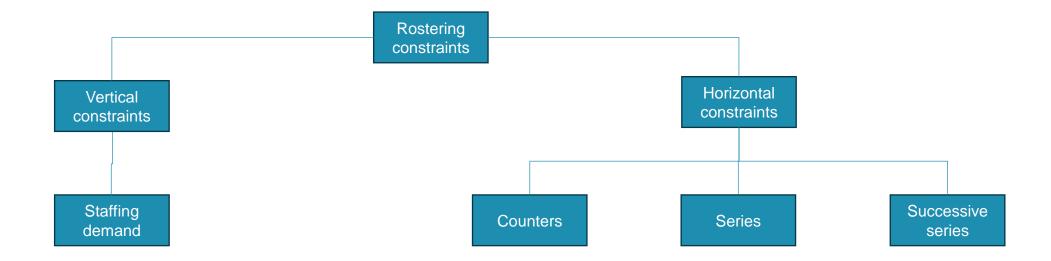
0/1

0/1

0/0

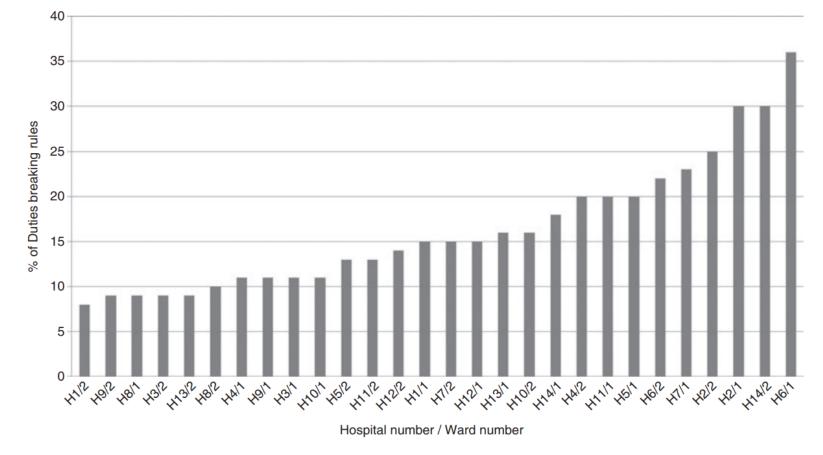
0/0

0/1


0/1

	Mon	Tue	Wed	Thu	Fri	Sat	Sun
Employee 1	Е	E	L	L	L		
Employee 2			Е	Е	Е	L	L
Employee 3	L	L		N	N	N	
Employee 4	N	N	N			E	E
			•				•
	4.14	4.14	4.14	4.14	4.14	4.14	4./4

No. of E shifts	1/1	1/1	1/1	1/1	1/1	1/1	1/1
No. of L shifts	1/1	1/1	1/1	1/1	1/1	1/1	1/1
No. of N shifts	1/1	1/1	1/1	1/1	1/1	1/0	0/0


Smet, P., Bilgin, B., De Causmaecker, P., & Vanden Berghe, G. (2014). Modelling and evaluation issues in nurse rostering. Annals of Operations Research, 218, 303-326.

Examples of horizontal rostering constraints

Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed
Ν	Ν	Ν			Е	Е	L	L	L

- Counter: 5 assignments per week
- Series: max 5 consecutive days worked
- Series: min 2 consecutive days off
- Series: complete and identical weekends
- Successive series : 11 hours rest between two consecutive days worked
- Successive series: min 2 consecutive days off after min 1 N shift worked

Drake, R. G. (2014). The nurse rostering problem: from operational research to organizational reality?. Journal of advanced nursing, 70(4), 800-810.

Best known solution	Best known lower bound	Shift types	Employees	Weeks	Instance
607	607	1	8	2	Instance1 txt xml
828	828	2	14	2	Instance2 txt xml
1001	1001	3	20	2	Instance3 txt xml
1716	1716	2	10	4	Instance4 txt xml
1143	1143	2	16	4	Instance5 txt xml
1950	1950	3	18	4	Instance6 txt xml
1056	1056	3	20	4	Instance7 txt xml
1300	1300	4	30	4	Instance8 txt xml
439	439	4	36	4	Instance9 txt xml
4631	4631	5	40	4	Instance10 txt xml
3443	3443	6	50	4	Instance11 txt xml
4040	4040	10	60	4	Instance12 txt xml
1348	1348	18	120	4	Instance13 txt xml
1278	1278	4	32	6	Instance14 txt xml
3829	3829	6	45	6	Instance15 txt xml
3225	3225	3	20	8	Instance16 txt xml
5746	5746	4	32	8	Instance17 txt xml
4459	4459	3	22	12	Instance18 txt xml
3149	3149	5	40	12	Instance19 txt xml
4769	4769	6	50	26	Instance20 txt xml
21133	21133	8	100	26	Instance21 txt xml
30241	30241	10	50	52	Instance22 txt xml
17428	16990	16	100	52	Instance23 txt xml
42463	26571	32	150	52	Instance24 txt xml

Instances with up to 50 employees, 10 shift types and a planning period of 1 year solved to optimality!

Dominant algorithms:

- Branch and price
- Metaheuristics (local search, large neighborhood search)

http://www.schedulingbenchmarks.org/nrp/

Reactive and proactive rostering

Reactive rostering

	Mon	Tue	Wed	Thu	Fri	Sat	Sun
Employee 1	E	E	E	L	L		
Employee 2			×	E	E	L	L
Employee 3	L	L	L		N	N	
Employee 4	N	N	N	N		E	E
						_	
No. of E shifts	1/1	1/1	<mark>0/1</mark>	1/1	1/1	1/1	1/1
No. of L shifts	1/1	1/1	1/1	1/1	1/1	1/1	1/1

1/1

1/1

1/1

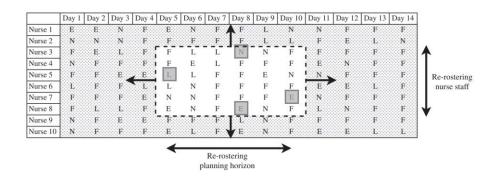
1/0

0/0

Employee 2 becomes absent on Wednesday.

Chain of repair operations:

- 1. Assign E to employee 1
- 2. Assign L to employee 3
- 3. Unassign N from employee 3 on Thursday
- 4. Assign N to employee 4 on Thursday


Common elements in reactive rostering:

1/1

- Alternative objective function
- Constraint relaxations

1/1

• Strategies to limit search space

Maenhout, B., & Vanhoucke, M. (2013). Reconstructing nurse schedules: Computational insights in the problem size parameters. Omega, 41(5), 903-918.

No. of N shifts

- Reactive rostering negatively impacts employees
 - Worse sleep quality
 - Reduced sleep duration
 - Higher turnover intention
- Better to make robust rosters that can better tolerate variability in employee availability →Proactive rostering
- Buffers

Djupedal, I. L. R., Pallesen, S., Harris, A., Waage, S., Bjorvatn, B., & Vedaa, Ø. (2022). Changes in the work schedule of nurses related to the COVID-19 pandemic and its relationship with sleep and turnover intention. International Journal of Environmental Research and Public Health, 19(14), 8682.

	Mon	Tue	Wed	Thu	Fri	Sat	Sun
Employee 1	L	L	L			E	E
Employee 2	E	E	×	E	E		
Employee 3			E	L	L	L	L
Employee 4	N	N	N	N	N		
	-	-	-	-	-		
	4.14	4.14	1/1	4./4	4.14	4.14	4 /4

No. of E shifts	1/1	1/1	<mark>1/1</mark>	1/1	1/1	1/1	1/1
No. of L shifts	1/1	1/1	1/1	1/1	1/1	1/1	1/1
No. of N shifts	1/1	1/1	1/1	1/1	1/1	1/0	0/0

Overstaffing for the E shift on Wednesday.

When Employee 2 becomes absent \rightarrow no change necessary!

	Mon	Tue	Wed	Thu	Fri	Sat	Sun
Employee 1	L	L	L			Е	E
Employee 2	E	E	×	E	E		
Employee 3			R → E	L	L	L	L
Employee 4	Ν	Ν	Ν	Ν	Ν		

No. of E shifts	1/1	1/1	<mark>0/1</mark>	1/1	1/1	1/1	1/1
No. of L shifts	1/1	1/1	1/1	1/1	1/1	1/1	1/1
No. of N shifts	1/1	1/1	1/1	1/1	1/1	1/0	0/0
No. of R shifts	0	0	1	0	0	0	0

Reserve shift R rostered on Wednesday.

When Employee 2 becomes absent \rightarrow Convert the reserve shift to an E shift!

Capacity buffer

	Wed
Employee 1	L
Employee 2	Е
Employee 3	Е
Employee 4	N

- Part of the regular assignments, no rerostering required
- Can only cover absences for the same shift type

Reserve shift buffer

	Wed
Employee 1	L
Employee 2	E
Employee 3	R
Employee 4	N

- Still requires changes during re-rostering
- Can cover absences for different shift types

• Re-rostering operations when using buffers

Operation	Re-rostering cost
Change a shift assignment	Large cost
Call in an interim worker	Very large cost

Quantifying and enforcing robustness in staff rostering

Joint work with Toni Wickert and Greet Vanden Berghe

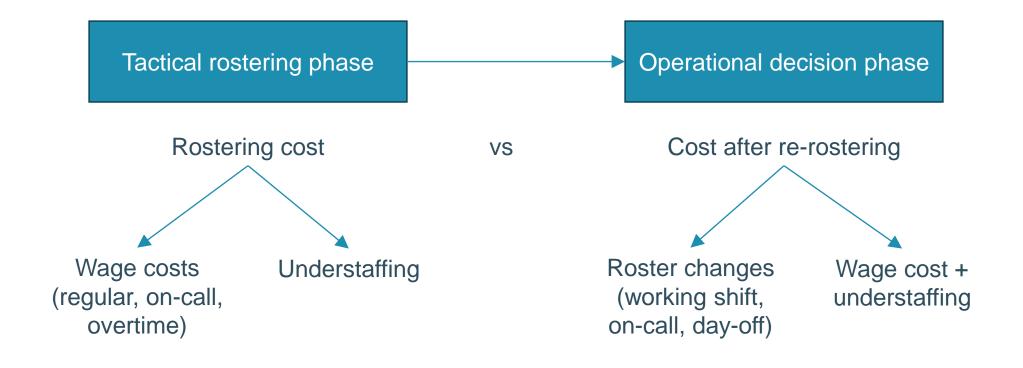
Wickert, T. I., Smet, P., & Vanden Berghe, G. (2021). Quantifying and enforcing robustness in staff rostering. Journal of Scheduling, 24(3), 347-366.

Generating robust rosters

- Measure roster robustness at different levels of granularity: roster-wide, per day, per shift or per skill
 - 0: none of the working shifts can be replaced
 - 1: all working shifts can be replaced
- Robustness from reserve shift buffers on day d:

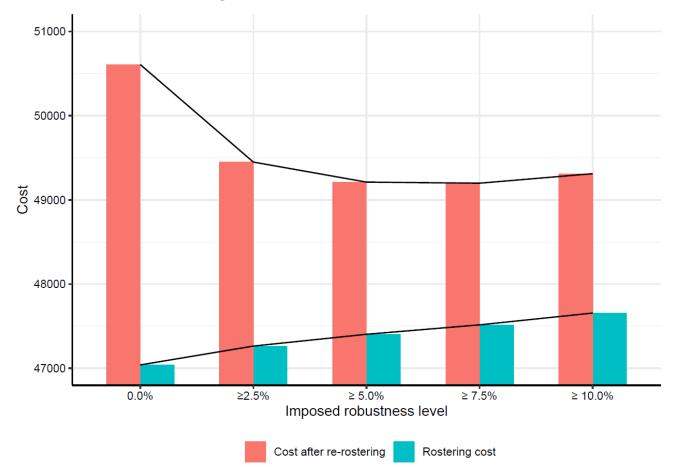
 $\widehat{r_d} = \frac{\text{Number of reserve shifts assigned on day } d}{\text{Number of working shifts assigned on day } d}$

- Use integer programming to generate rosters according to a given robustness level.
- When is it no longer beneficial to increase roster robustness?


Computational study

- Data from the second International Nurse Rostering Competition
 - 35 employees
 - 28 days
 - 4 regular shift types
- Employees without skills and skilled employees with hierarchical substitution
- Generate and re-roster 100 absence scenarios
- Robustness levels: 0.0%, ≥ 2.5%, ≥ 5.0%, ≥ 7.5%, ≥ 10.0%

Ceschia, S., Dang, N., De Causmaecker, P., Haspeslagh, S., & Schaerf, A. (2019). The second international nurse rostering competition. Annals of Operations Research, 274(1), 171-186.



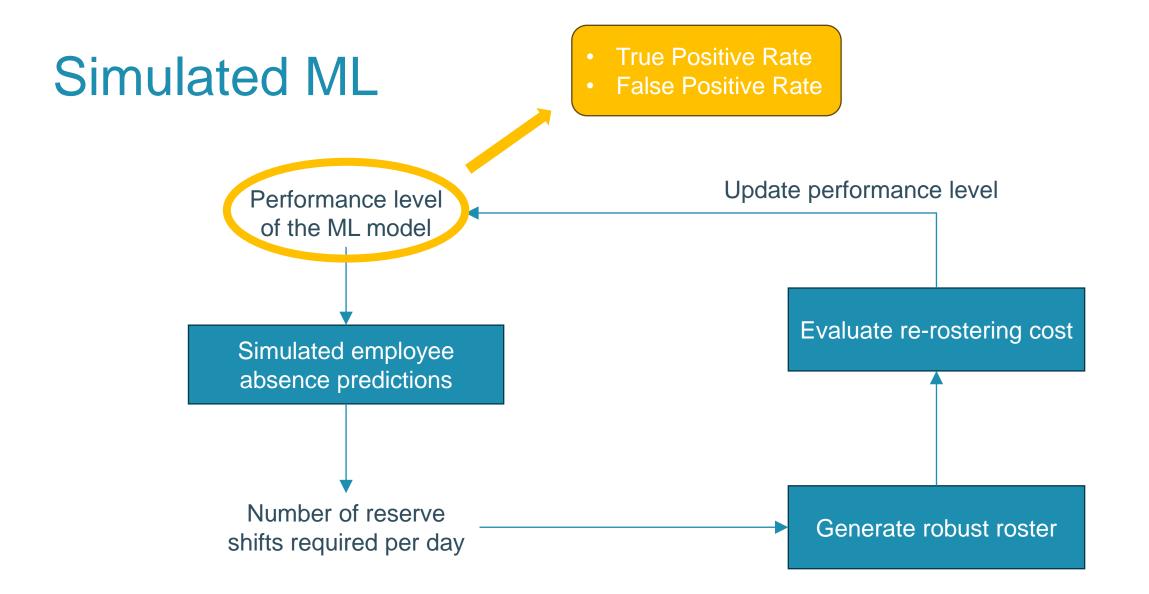
Computational study

Ingels, J., & Maenhout, B. (2015). The impact of reserve duties on the robustness of a personnel shift roster: An empirical investigation. Computers & Operations Research, 61, 153-169.

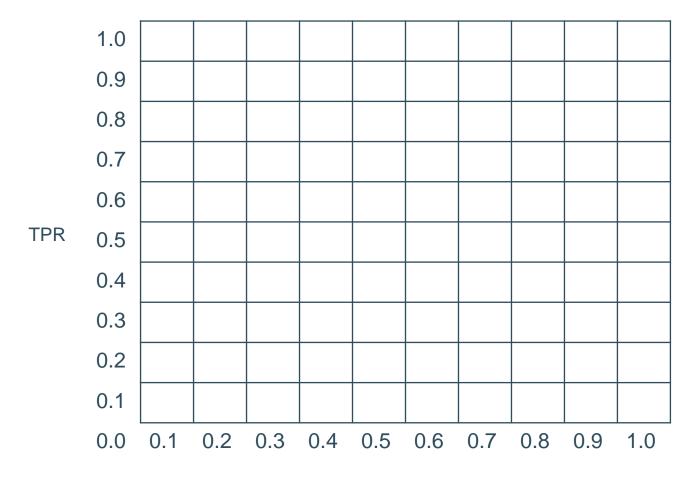
Comparison of robustness levels and rostering cost and cost after re-rostering.

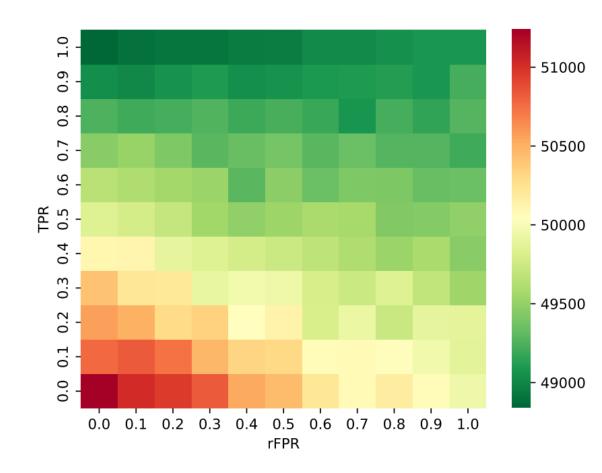
Data-driven robust rostering

- Requires human expert/experiments to determine a suitable number of reserve shifts
- Use data in a predict-then-optimize approach

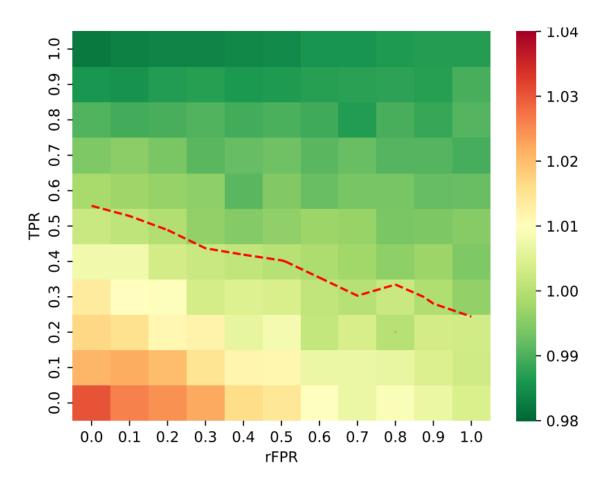

Required performance?

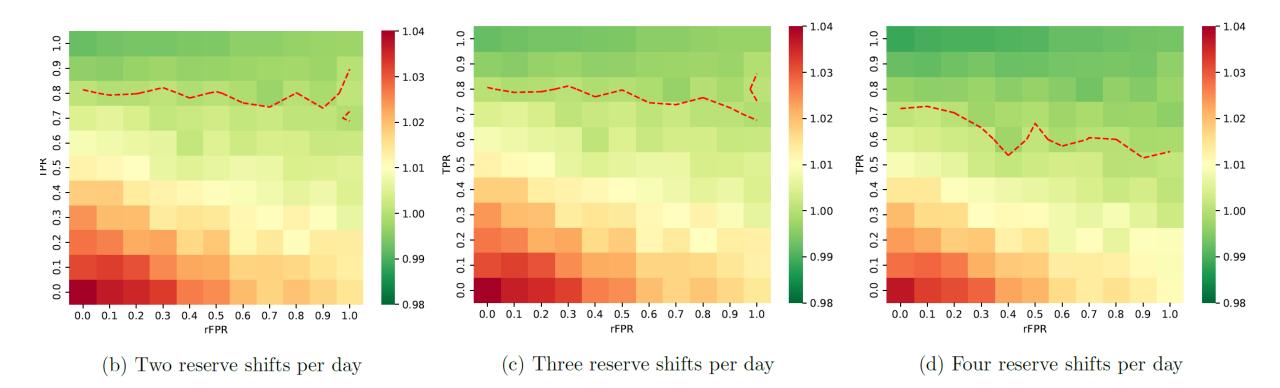
Evaluating machine learning models for data-driven robust personnel rostering


Joint work with Martina Doneda, Giuliana Carello, Ettore Lanzarone and Greet Vanden Berghe

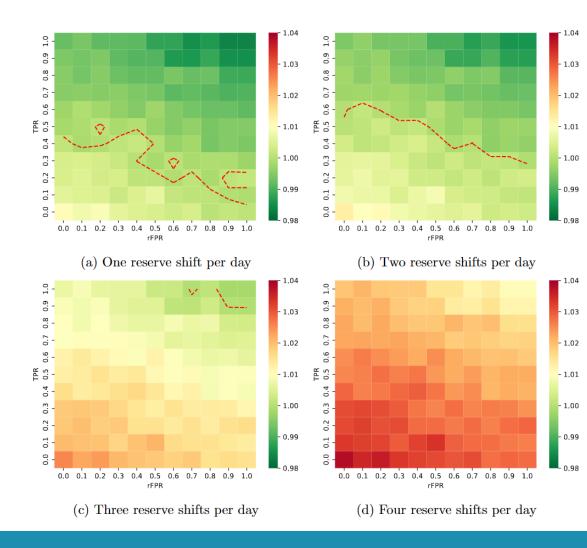


Computational study


rFPR



- Re-rostering cost in function of TPR and rFPR
- Lowest cost obtained when absences and nonabsences are predicted correctly (TPR=1 and rFPR=0)
- In general, it is better to be conservative and to assign (too) many reserve shifts



- Comparison to a non-data-driven approach that assigns 1 reserve shifts per day
- Ratio of re-rostering cost of ML-informed approach over re-rostering cost of non-data-driven approach
 - ML-informed approach generates better solutions under reasonable conditions

Computational study – Hierarchical skills

- Comparison to a non-data-driven approach that assigns 1, 2, 3 or 4 reserve shifts per day
- Ratio of re-rostering cost of ML-informed approach over re-rostering cost of non-data-driven approach
- The ML-informed approach cannot outperform the non-data-driven approach that assigns 4 reserve shifts per day

Conclusions and future research

Conclusions

- Uncertainty is always there when scheduling humans
- Proactive rostering helps mitigate negative effects of reactive rostering
- Methodology to generate robust rosters using capacity and reserve shift buffers
- Improve robustness by considering data on absenteeism
- Methodology to evaluate ML prediction performance requirements

Model the true impact of reactive rostering on employee well-being (health, job engagement,...)

Explore other types of roster robustness.

Generalize the simulated ML methodology.

Outlook

- Major shift after the COVID-19 pandemic
 - Increased workload (negative)
 - Increased flexibility (positive)
- Employee schedules should consider:
 - Reliability
 - Autonomy
 - Fairness

Thank you for your attention

pieter.smet@kuleuven.be

