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Scheduling under Uncertainty

Different models for uncertain input

Online Stochastic Statistical data or
Information Information ML predictions

© pixabay

Different optimization frameworks: online optimization, stochastic
optimization, robust optimization, explorable uncertainty, etc.

Can error-prone predictions improve upon performance guarantees?
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Learning-Augmented Algorithms

» Algorithm with access to prediction

» No assumption on the quality of the prediction

© Adobe Stock

Desired properties

» Consistency: better than worst case if the prediction errors are small

> Robustness: bounded worst-case for arbitrary predictions

» Error-dependency: ideally graceful degradation with the error

Line of research initiated by [Lykouris, Vassilvitskii, ICML 2018], and even earlier
[Mahidan, Nazerzadeh, Saberi, EC 2007] — became an extremely vibrant area

https://algorithms-with-predictions.github.io/
Beyond worst case: competitive ratio (online alg.), running time, etc.
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2. Online Routing: uncertain job arrival times and locations
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Roadmap

Prediction models and learning-augmented algorithms for

1. Online Scheduling: uncertain processing times

2. Online Routing: uncertain job arrival times and locations

Important questions

» What to predict? Can we beat worst case bounds?
» How to ensure robustness?

» What is a good error measure?

Nicole Megow
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Online Scheduling

Joint work with Alexander Lindermayr, SPAA 2022.
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(Non)-Clairvoyant Scheduling

Input: set of jobs with (unknown) processing requirements p;

Goal: schedule jobs (preemptively) on a single machine

G G I G Cs

G
Objective: Minimize sum of completion times 3_; C; > iwi G

Optimal Schedule: Shortest Processing Time first (SPT)
Mo> > ¥ (WSPT)

Processing times must be known (clairvoyant scheduling).

We assume unknown processing times (non-clairvoyant scheduling).
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Non-clairvoyant Scheduling

Competitive analysis (worst-case analysis)

An online algorithm is p-competitive if it achieves, for any input instance,
a solution of cost within a factor p of the optimal cost:

ArLc(l) < p-Opr(/), for any input /.
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Non-clairvoyant Scheduling

Round-Robin (RR) is 2-competitive for minimizing Y~ C; on a single
machine, and this is best-possible. [Motwani, Phillips, Torng 1994]
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Non-clairvoyant Scheduling

Round-Robin (RR) is 2-competitive for minimizing Y~ C; on a single
machine, and this is best-possible. [Motwani, Phillips, Torng 1994]

CC Ce Ca Cb Cd

Further Time-Sharing algorithms for more general problems:

» Individual job weights: \Weighted Round-Robin (2-competitive)
[Kim, Chwa 2003]

» Identical machines: Weighted Dynamic Equipartition (2-comp.)
[Beaumont, Bonichon, Eyraud-Dubois, Marchal 2012]

» Unrelated machines: Proportional Fairness (128-competitive)
[Im, Kulkarni, Munagala 2018]
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Length Predictions and /1-errors

Predict jOb Iengths Y [Kumar, Purohit, Svitkina 2018]
[Wei, Zhang 2020], [Im, Kumar, Qaem, Purohit 2021]
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Length Predictions and /1-errors

Predict job lengths y; [Kumar, Purohit, Svitkina 2018]
[Wei, Zhang 2020], [Im, Kumar, Qaem, Purohit 2021]
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Length Predictions and /1-errors

Predict jOb Iengths Y [Kumar, Purohit, Svitkina 2018]
[Wei, Zhang 2020], [Im, Kumar, Qaem, Purohit 2021]
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Error: (1 = > 7 1p; — vl

Natural algorithm: run shortest predicted job first (SPF).
(“Follow the prediction”: SPT on y;)

Lemma [Kumar, Purohit, Svitkina 2018]

SPF achieves scheduling cost SPF(y;, pj) < OpPT(p;) + n- 1.

Consistent but not robust (against bad predictions).
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Preferential Time Sharing Framework (PTS)

[Kumar, Purohit, Svitkina 2018]
Input:
— prediction-clairvoyant alg. (“follow the prediction™) with some

error-dependent competitive ratio
— non-clairvoyant alg. with error-independent competitive ratio

— confidence parameter \ € (0, 1)
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Preferential Time Sharing Framework (PTS)

[Kumar, Purohit, Svitkina 2018]
Input:
— prediction-clairvoyant alg. A (“follow the prediction”) with some

error-dependent competitive ratio
— non-clairvoyant alg. A" with error-independent competitive ratio

— confidence parameter \ € (0, 1)
Preferential Time Sharing (), A¢, AV)
(1—-2X
A

Motivation: 1 gives consistency, A" gives robustness, trade-off by A

Monotone algorithms: if p;'s shrink, completion times do not increase
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Preferential Time Sharing Framework (PTS)

[Kumar, Purohit, Svitkina 2018]

PTS(A, A%, A") has competitive ratio min {1 5 ( ) vX}' if
> is monotone and ( )—competitive and
> is monotone and //-competitive.

Nicole Megow 8



Preferential Time Sharing Framework (PTS)

[Kumar, Purohit, Svitkina 2018]

PTS(A, A%, A") has competitive ratio min {1 5 ( ) vX}' if
> is monotone and ( )—competitive and
> is monotone and //-competitive.
Corollary. PTS(, . ) achieves for non-clairvoyant 1|pmtn|}_ C; with

length predictions, for any A € (0,1), a competitive ratio of

. 1 1+n-€1 g
HELE Y Oorr /) M|~

Nicole Megow 8



Preferential Time Sharing Framework (PTS)

[Kumar, Purohit, Svitkina 2018]

PTS(A, A%, A") has competitive ratio min {1 5 ( ) vX}' if
> is monotone and ( )—competitive and
> is monotone and //-competitive.
Corollary. PTS(, . ) achieves for non-clairvoyant 1|pmtn|}_ C; with

length predictions, for any A € (0,1), a competitive ratio of
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Can the PTS framework be generalized?

(Informal) Theorem [Lindermayr and M., 2022]

The PTS theorem can be generalized to scheduling settings with unrelated
machines, release dates and weights.

(1-x

competitive ratio

A

0 2 4

relative error {1/OPT

1. develop monotone prediction-clairvoyant alg. A€ and
error-dependent competitive ratio

2. select a monotone non-clairvoyant algorithm AN

Obstacle: Proving error-dependent bounds seems difficult with ¢1-error
(linear error vs. quadratic objective) — What is a “good” error measure?

Nicole Megow 9
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Discussion ¢1-Error Measure

{1-error cannot distinguish well between “good” and “bad” predictions
s e B

1L2L3 n

SPF- 5 SPF ~ OPT + n- (4
nC1 2L3

e B R o

SPF %.;_; SPF = OPT 40,
1243 n
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Length Predictions and v-error [Im, Kumar, Qaem, Purohit 2021]

Alternative error: v = OpT({max{p;. y;}};) — OpT({min{p;, y;}};)
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Length Predictions and v-error [Im, Kumar, Qaem, Purohit 2021]

Alternative error: v = OpPT({max{p;. y;}};) — OpT({min{p;, y;}};)

el e B e B
[ 10s O S

Error-tracker algorithm: min {(1 +¢)OpT+ O (E% log %) v, %OPT}
for 1|pmtn|3 C; (seems challenging to generalize)

Issue: Underestimates true difficulty of the following instance

PL=Y1=...=Pn-1=Yn-1=1, butp,,:n2 and y, = 0.

v=n?+n=0(n?) Vs SPF(yj, p;) — OPT(p;) = Q(n?)
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Permutation Predictions

Permutation predictions: predict an order of jobs: 6 : [n] — [n]

Motivation: knowing WSPT order is often sufficient for good approximations:

— optimal for 1|(pmtn)|>" w;C; [Smith 1956]
— 2-competitive for P|r;, pmtn|>" w;C; [M. & Schulz 2004]
— 5.83-competitive for R|r;, pmtn|d_ w; G [Lindermayr & M. 2022]
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Permutation Predictions

Permutation predictions: predict an order of jobs: 6 : [n] — [n]

P1 P2 Ps  (W)SPT order p3 < p1 < p2
Y1 Y2

Indicate correct order y3 < y1 < y», but 1, >0
)%l Y2 y3

Error measure: quantifies effect of inversions Z between & and true
WSPT order on list scheduling according to predicted order:

n°= > (wipj— wpi)
(iJ)eT

> For 1|3 w; G this is exactly n° = Op1(6) — OPT(0).
» 1 captures structure instead of irrelevant numerical values.
» Permutation predictions are efficiently PAC-learnable w.r.t. n°.
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PTS and Permutation Predictions (1)

PTS for weighted jobs on a single machine 1|pmtn|>" w;C;

> prediction-clairvoyant A€: (monotone optimal)  [Smith 1956]

Schedule jobs in WSPT order
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PTS and Permutation Predictions (1)

for weighted jobs on a single machine 1|pmtn|> w;C;

> prediction-clairvoyant A€: (monotone optimal)  [Smith 1956]

Schedule jobs in predicted order &

\

» non-clairvoyant AN: (monotone 2-competitive) [Kim, Chwa 2003]
_ 1 1
min ¢ —— - —-
1-2A A
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PTS and Permutation Predictions (2)

for m identical machines and release dates P|r;, pmtn|>_ w;C;

> prediction-clairvoyant AC: (monotone 2-competitive)
[M. and Schulz 2004]

at any time

3
=
——
—
| | =
>
N
~__—
> =
—

Nicole Megow 14



PTS and Permutation Predictions (2)

PTS for m identical machines and release dates P|r;, pmtn|>_ w;C;

> prediction-clairvoyant AC: P-WSPT (monotone 2-competitive)
[M. and Schulz 2004]
unfinished released jobs in WSPT order

at any time

3
=
——
—
I"—‘
>
N
~__—
> =
—

Nicole Megow 14



PTS and Permutation Predictions (2)

PTS for m identical machines and release dates P|r;, pmtn|>_ w;C;

> prediction-clairvoyant AC: P-WSPT (monotone 2-competitive)
[M. and Schulz 2004]
unfinished released jobs in WSPT order

~

: schedule m first jobs
2
3

at any time

3
=
——
—
I‘»—‘
>
N
~__—
> =
—

Nicole Megow 14



PTS and Permutation Predictions (2)

PTS for m identical machines and release dates P|r;, pmtn|>_ w;C;

> prediction-clairvoyant AC: P-WSPT (monotone 2-competitive)
[M. and Schulz 2004]
unfinished released jobs in predicted order &

~

: schedule m first jobs
2
3

at any time

Nicole Megow 14



PTS and Permutation Predictions (2)

PTS for m identical machines and release dates P|r;, pmtn|>_ w;C;

> prediction-clairvoyant AC: P-WSPT (monotone 2-competitive)
[M. and Schulz 2004]
unfinished released jobs in predicted order &

~

: schedule m first jobs
2
3

at any time

» non-clairvoyant AN: WDEQ (monotone 3-competitive)
[Beaumont, Bonichon, Eyraud-Dubois and Marchal 2012]

min ! 2+7,/S L 3
o m-OprT )7 A
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PTS and Permutation Predictions (3)

on m unrelated machines R|r;, pmtn|}_ w;C;:

Predict machine allocation and permutation for each machine 64, ...
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PTS and Permutation Predictions (3)

PTS on m unrelated machines R|rj, pmtn|y_ w;C;:

A

Predict machine allocation and permutation for each machine 61,...,6

» prediction-clairvoyant A¢: Minlncrease 1\WSPT (mon. 5.83-comp.)
[Lindermayr and M. 2022]

preemptive WSPT per machine
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[Lindermayr and M. 2022]
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PTS and Permutation Predictions (3)

PTS on m unrelated machines R|rj, pmtn|y_ w;C;:

Predict machine allocation and permutation for each machine 61,...,6

» prediction-clairvoyant A¢: Minlncrease 1\WSPT (mon. 5.83-comp.)
[Lindermayr and M. 2022]

preemptive WSPT per machine min. increase of
1 total obj. value o0
2 <—
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PTS and Permutation Predictions (3)

PTS on m unrelated machines R|rj, pmtn|y_ w;C;:

A

Predict machine allocation and permutation for each machine 61,...,6

» prediction-clairvoyant A¢: Minlncrease 1\WSPT (mon. 5.83-comp.)
[Lindermayr and M. 2022]
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PTS and Permutation Predictions (3)

PTS on m unrelated machines R|rj, pmtn|y_ w;C;:

Predict machine allocation and permutation for each machine 61,...,6

» prediction-clairvoyant A¢: Minlncrease 1\WSPT (mon. 5.83-comp.)
[Lindermayr and M. 2022]

preemptive predicted order &; per machine i

1 o

5 assign job j to
predicted machine

3 ie. i €[m]s.t. j€b

4

» non-clairvoyant AN: Proportional Fairness (mon. 128-competitive)
[Im, Kulkarni and Munagala 2018]

1 nR 1
ind —— . [5.8084+ -1}, =.128
m'"{1—>\ (5 +()m>’/\ }
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Sensitivity Experiments

» Single machine, unweighted jobs (PTS equals algorithm in [KPs1g])
» Synthetic instances sampled from Pareto-distribution with shape 1.1
Many small jobs and few very large jobs!
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Online Learning Experiments

» learn prediction from previous instances
> already after one round performance improves substantially
> such instances can be learned fast in practice (detect long jobs)
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o 2.6 O ¢ ¢ D 8 e ) e 1 i e 8

2

= 2.4 =@= PTS (A =0.1) =&=+ MultiStage (e = 0.25)

g ~x= PTS (A = 0.66) —++ MultiStage (e = 10.0)

;‘GSJ 2.2 -wm- TwoStage (\ = 0.1) Round-Robin

CEL =+= TwoStage (\ = 0.66)

S 2.0

©

o

£ 1.8

Q

£

1.6

L4-4— T T T T T
0 2 4 6 8 10
Round

Nicole Megow



Intermediate Summary

Non-clairvoyant scheduling with predictions

» Discussion of and

Nicole Megow

and

18



Intermediate Summary

Non-clairvoyant scheduling with predictions
» Discussion of and and

> that admits (blackbox) algorithms
with certain properties (error-dependent comp. ratio, monotone)

Nicole Megow 18



Intermediate Summary

Non-clairvoyant scheduling with predictions

and and

» Discussion of

| 2

that admits (blackbox) algorithms
with certain properties (error-dependent comp. ratio, monotone)

» First results for weights, release dates, multiple machine models

18

Nicole Megow



Intermediate Summary

Non-clairvoyant scheduling with predictions
» Discussion of and and

> that admits (blackbox) algorithms
with certain properties (error-dependent comp. ratio, monotone)

» First results for weights, release dates, multiple machine models

Other scheduling results involving predictions
P |oad balancing [Lattanzi, Lavastida, Moseley, Vassilvitskii SODA 2020]
» flowtime minimization [Azar, Leonardi, Touitou STOC 2021, SODA 2022]

» speed scaling [Bamas, Maggiori, Rohwedder, Svensson NeurlPS 2020], [Antoniadis,
Ganje, Shahkarami SWAT 2022]
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Online Routing Problems

more general online graph problems incl. network design

Joint work with Giulia Bernardini (Trieste), Alexander Lindermayr (Bremen), Alberto
Marchetti-Spaccamela (Rome), Leen Stougie & Michelle Sweering (CWI).



The Online Traveling Salesperson Problem
Input: Requests (x, r) arrive online at time r at location x

Task: Determine a tour of minimum total length (makespan)
visiting every request after its arrival and returning to the origin.
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The Online Traveling Salesperson Problem

Input: Requests (x, r) arrive online at time r at location x
Task: Determine a tour of minimum total length (makespan)
visiting every request after its arrival and returning to the origin.

REPLAN IGNORE

» REPLAN and IGNORE: 2.5-competitive [Ausiello et al. 2001]
> SMARTSTART: 2-competitive, best possible [Ascheuer et al. 2000]
Generalization: Online Dial-a-Ride (tour for transportation requests)

Nicole Megow 19



Graph Problems with Predictions and Roadmap

Other works: graph problems with predictions
> Network design [Azar, Panigrahi, Touitou, SODA 2022], [Moseley, Xu, AAAI 2022]
» Graph exploration [Eberle, Lindermayr, Nélke, M., Schlster, AAAI 2022]

» Minimum Spanning Tree with queries [Erlebach, de Lima, M., Schiéter, 2022
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Graph Problems with Predictions and Roadmap

Other works: graph problems with predictions
> Network design [Azar, Panigrahi, Touitou, SODA 2022], [Moseley, Xu, AAAI 2022]
» Graph exploration [Eberle, Lindermayr, Nélke, M., Schiéter, AAAI 2022]

» Minimum Spanning Tree with queries [Erlebach, de Lima, M., Schlster, 2022]

1. Universal error measure for input predictions based on edge covers
in suitably defined graphs

2. Algorithms with error-dependent competitive ratio
— Online TSP (and Online Dial-a-Ride)

— Online Steiner Tree (Online Facility Location, Steiner Forest)

Nicole Megow 20



Prediction Model

Prediction: request sequence (release dates and points/nodes)
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Prediction Model
Prediction: request sequence (release dates and points/nodes)

Possible errors in:
(i) location, (ii) time, and (iii) length of sequence

Goals of an error measure:
» distinguish “good” and “bad"” predictions
P> quantify the effect of a erroneous prediction on the objective value
of an algorithm trusting the predictions

Intuition for detour error:
> Any “good” algorithm needs to trust predictions to some extent.
» An unpredicted actual request arrives (unexpected).

... might be many options!

Nicole Megow 21



Minimum-Cost Edge Cover

Idea: Model potential detours for serving unexpected requests as complete
bipartite graph with edge cost ~((x, r), (X,7)) = (r — 7)1 + d(x, X).

o9

A

R\ R R

min-cost edge cover of
R\ R with value ['(R, R)

Nicole Megow
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Idea: Model potential detours for serving unexpected requests as complete
bipartite graph with edge cost ~((x, r), (X,7)) = (r — 7)1 + d(x, X).

Similarly, can be covered by predicted requests.
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Minimum-Cost Edge Cover

Idea: Model potential detours for serving unexpected requests as complete
bipartite graph with edge cost ~((x, r), (X,7)) = (r — 7)1 + d(x, X).

Similarly, can be covered by predicted requests.

o9

R\ R R R\ R R
min-cost edge cover of min-cost edge cover of
R\ R with value ['(R, R) R\ R with value

Edge Cover Error Measure: A(R,R) = (R, R) +

Nicole Megow 22



Learning-Augmented Algorithms

Common approach: combine online & offline algorithms in a clever way
— switching between algorithms might be expensive
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Common approach: combine online & offline algorithms in a clever way
— switching between algorithms might be expensive

Algorithm DELAYEDTRUST

T: optimal tour on prediction; C: its length; o« > 0 confidence param.

(i) Follow blackbox online algorithm A as long as for time t holds
t<a-C—d(p(t),0). (robustness)
(i) Move the server to the origin.

(iii) Follow T and replan if actual unexpected request arrives. (consist.)
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Learning-Augmented Algorithms

Common approach: combine online & offline algorithms in a clever way
— switching between algorithms might be expensive

Algorithm DELAYEDTRUST

T optimal tour on prediction; C: its length; o« > 0 confidence param.

(i) Follow blackbox online algorithm A as long as for time t holds
t<a-C—d(p(t),0). (robustness)
(ii) Move the server to the origin.

(iii) Follow T and replan if actual unexpected request arrives. (consist.)

For every o > 0 and p-competitive online algorithm A, DELAYED TRUST
has a competitive ratio of at most

min{(l—i—a)(l—ké'—la/r\f),l—i-(l—i-é)-p}.

Nicole Megow 23
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Refinement: Hyperedge Cover

Instance Edge cover bipartite graph

R' CR\R

Hyperedge cost: length of opt. tour for R’ which starts in X at time 7.
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size at most k.
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Refinement: Hyperedge Cover

Instance Edge cover bipartite graph

R' CR\R

Hyperedge cost: length of opt. tour for R’ which starts in X at time 7.

Hyperedge cover error: min-cost hyperedge cover using hyperedges of
size at most k.

— configurable, stronger, admits refined bounds for our algorithm

Nicole Megow 24



Further Applications

» Universal hyperedge cover error for online graph (metric) problems

— captures error in # requests, location and time
— nice properties, configurable, seems to capture “true” error very well

Nicole Megow
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Further Applications

» Universal hyperedge cover error for online graph (metric) problems

— captures error in # requests, location and time
— nice properties, configurable, seems to capture “true” error very well

» Bounds for (new and old) learning-augmented algorithms

— first framework for online TSP and Dial-a-Ride (online-time)
— new bounds for known algorithm for network design (online-list)
[Azar, Panigrahi, Touitou SODA 2022]

Setting Problem Algorithm Error-dependency
online-time TSP SMARTTRUST (1+a) -OPT +3- A«
DARP SMARTTRUST (1+a)-OPT+3- A«
Steiner Tree APT  O(1)- OPT + O(log(k)) - A«
online-list Steiner Forest APT O(1) - OPT + O(k) - A«
Facility Location APT  O(1)- OPT + O(log(k)) - A«
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Future & Discussion

This is a fascinating line of research with many open directions!
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Future & Discussion

This is a fascinating line of research with many open directions!

Some further directions
» Universal error measure for input predictions — further applications?
» Formalize what constitutes a good error measure
» Prediction models: input vs. action, predict less

> What is learnable? Integrate learning into algorithm design!

Thank you.
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