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Scheduling under Uncertainty

Different models for uncertain input

Online
Information

Stochastic
Information ▶ deterministic

uncertainty sets
▶ explorable

uncertainty
▶ etc.

Different optimization frameworks: online optimization, stochastic
optimization, robust optimization, explorable uncertainty, etc.

Can error-prone predictions improve upon performance guarantees?

Nicole Megow 1



Scheduling under Uncertainty

Different models for uncertain input

Online
Information

Stochastic
Information ▶ deterministic

uncertainty sets
▶ explorable

uncertainty
▶ etc.

Different optimization frameworks: online optimization, stochastic
optimization, robust optimization, explorable uncertainty, etc.

Can error-prone predictions improve upon performance guarantees?

Nicole Megow 1



Scheduling under Uncertainty

Different models for uncertain input

Online
Information

Stochastic
Information ▶ deterministic

uncertainty sets
▶ explorable

uncertainty
▶ etc.

Different optimization frameworks: online optimization, stochastic
optimization, robust optimization, explorable uncertainty, etc.

Can error-prone predictions improve upon performance guarantees?

Nicole Megow 1



Scheduling under Uncertainty

Different models for uncertain input

Online
Information

Stochastic
Information

Statistical data or
ML predictions

© pixabay

Different optimization frameworks: online optimization, stochastic
optimization, robust optimization, explorable uncertainty, etc.

Can error-prone predictions improve upon performance guarantees?

Nicole Megow 1



Scheduling under Uncertainty

Different models for uncertain input

Online
Information

Stochastic
Information

Statistical data or
ML predictions

© pixabay

Different optimization frameworks: online optimization, stochastic
optimization, robust optimization, explorable uncertainty, etc.

Can error-prone predictions improve upon performance guarantees?

Nicole Megow 1



Learning-Augmented Algorithms

▶ Algorithm with access to prediction
▶ No assumption on the quality of the prediction

© Adobe Stock

Desired properties

▶ Consistency: better than worst case if the prediction errors are small
▶ Robustness: bounded worst-case for arbitrary predictions
▶ Error-dependency: ideally graceful degradation with the error

Line of research initiated by [Lykouris, Vassilvitskii, ICML 2018], and even earlier
[Mahidan, Nazerzadeh, Saberi, EC 2007] − became an extremely vibrant area

https://algorithms-with-predictions.github.io/

Beyond worst case: competitive ratio (online alg.), running time, etc.
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Roadmap

Prediction models and learning-augmented algorithms for

1. Online Scheduling: uncertain processing times

2. Online Routing: uncertain job arrival times and locations

Important questions
▶ What to predict? Can we beat worst case bounds?
▶ How to ensure robustness?
▶ What is a good error measure?
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Online Scheduling
Joint work with Alexander Lindermayr, SPAA 2022.



(Non)-Clairvoyant Scheduling
Input: set of jobs with (unknown) processing requirements pj

Goal: schedule jobs (preemptively) on a single machine

C1 C4 C5 C2 C3C3 C5 C1 C2 C4

Objective: Minimize sum of completion times
∑

j Cj

∑
j wjCj

Optimal Schedule: Shortest Processing Time first (SPT)
w1
p1

≥ . . . ≥ wn
pn

(WSPT)

Processing times must be known (clairvoyant scheduling).

We assume unknown processing times (non-clairvoyant scheduling).
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Non-clairvoyant Scheduling

Competitive analysis (worst-case analysis)
An online algorithm is ρ-competitive if it achieves, for any input instance,
a solution of cost within a factor ρ of the optimal cost:

Alg(I) ≤ ρ · Opt(I), for any input I.

Round-Robin (RR) is 2-competitive for minimizing
∑

Cj on a single
machine, and this is best-possible. [Motwani, Phillips, Torng 1994]

Cc Ca CeCb Cd

Further Time-Sharing algorithms for more general problems:
▶ Individual job weights: Weighted Round-Robin (2-competitive)

[Kim, Chwa 2003]

▶ Identical machines: Weighted Dynamic Equipartition (2-comp.)
[Beaumont, Bonichon, Eyraud-Dubois, Marchal 2012]

▶ Unrelated machines: Proportional Fairness (128-competitive)
[Im, Kulkarni, Munagala 2018]
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Length Predictions and ℓ1-errors

Predict job lengths yj [Kumar, Purohit, Svitkina 2018]
[Wei, Zhang 2020], [Im, Kumar, Qaem, Purohit 2021]

p1 p2 p3 p4 p5

y1 y2 y3 y4 y5 ℓ1-error

Error: ℓ1 =
∑n

j=1|pj − yj |

Natural algorithm: run shortest predicted job first (SPF).
(“Follow the prediction”: SPT on yj)

Lemma [Kumar, Purohit, Svitkina 2018]

SPF achieves scheduling cost SPF(yj , pj) ≤ Opt(pj) + n · ℓ1.

Consistent but not robust (against bad predictions).
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Preferential Time Sharing Framework (PTS)
[Kumar, Purohit, Svitkina 2018]

Input:
− prediction-clairvoyant alg. AC (“follow the prediction”) with some

error-dependent competitive ratio
− non-clairvoyant alg. AN with error-independent competitive ratio
− confidence parameter λ ∈ (0, 1)

Preferential Time Sharing (λ, AC , AN)

AC AN AC AN AC AN AC AN AC AN

(1 − λ) λ

AC

AN

(1 − λ)

λ

Motivation: AC gives consistency, AN gives robustness, trade-off by λ

Monotone algorithms: if pj ’s shrink, completion times do not increase
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Preferential Time Sharing Framework (PTS)
[Kumar, Purohit, Svitkina 2018]

Theorem
PTS(λ, AC , AN) has competitive ratio min

{
1

1−λ

(
α + η

Opt
)

, β
λ

}
, if

▶ AC is monotone and
(

α + η

Opt
)

-competitive and

▶ AN is monotone and β-competitive.

Corollary. PTS(λ, SPF, RR) achieves for non-clairvoyant 1|pmtn|
∑

Cj with
length predictions, for any λ ∈ (0, 1), a competitive ratio of

min
{

1
1 − λ

(
1 + n · ℓ1

Opt

)
,

2
λ

}
.

0 2 4
1

2

3

rel. error ℓ1/Opt

co
m

p.
ra

tio

λ small

0 2 4
1

2

3

rel. error ℓ1/Opt

co
m

p.
ra

tio

λ large

Nicole Megow 8



Preferential Time Sharing Framework (PTS)
[Kumar, Purohit, Svitkina 2018]

Theorem
PTS(λ, AC , AN) has competitive ratio min

{
1

1−λ

(
α + η

Opt
)

, β
λ

}
, if

▶ AC is monotone and
(

α + η

Opt
)

-competitive and

▶ AN is monotone and β-competitive.

Corollary. PTS(λ, SPF, RR) achieves for non-clairvoyant 1|pmtn|
∑

Cj with
length predictions, for any λ ∈ (0, 1), a competitive ratio of

min
{

1
1 − λ

(
1 + n · ℓ1

Opt

)
,

2
λ

}
.

0 2 4
1

2

3

rel. error ℓ1/Opt

co
m

p.
ra

tio

λ small

0 2 4
1

2

3

rel. error ℓ1/Opt

co
m

p.
ra

tio

λ large

Nicole Megow 8



Preferential Time Sharing Framework (PTS)
[Kumar, Purohit, Svitkina 2018]

Theorem
PTS(λ, AC , AN) has competitive ratio min

{
1

1−λ

(
α + η

Opt
)

, β
λ

}
, if

▶ AC is monotone and
(

α + η

Opt
)

-competitive and

▶ AN is monotone and β-competitive.

Corollary. PTS(λ, SPF, RR) achieves for non-clairvoyant 1|pmtn|
∑

Cj with
length predictions, for any λ ∈ (0, 1), a competitive ratio of

min
{

1
1 − λ

(
1 + n · ℓ1

Opt

)
,

2
λ

}
.

0 2 4
1

2

3

rel. error ℓ1/Opt

co
m

p.
ra

tio

λ small

0 2 4
1

2

3

rel. error ℓ1/Opt

co
m

p.
ra

tio

λ large

Nicole Megow 8



Can the PTS framework be generalized?

(Informal) Theorem [Lindermayr and M., 2022]

The PTS theorem can be generalized to scheduling settings with unrelated
machines, release dates and weights.

AC AN AC AN AC AN AC AN AC AN

(1 − λ)λ

AC

AN

(1 − λ)

λ

0 2 4
1

2

3

relative error ℓ1/Opt

co
m

pe
tit

iv
e

ra
tio

Roadmap

1. develop monotone prediction-clairvoyant alg. AC and
error-dependent competitive ratio

2. select a monotone non-clairvoyant algorithm AN

Obstacle: Proving error-dependent bounds seems difficult with ℓ1-error
(linear error vs. quadratic objective) −→ What is a “good” error measure?
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Can the PTS framework be generalized?
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Discussion ℓ1-Error Measure
ℓ1-error cannot distinguish well between “good” and “bad” predictions

p1 p2 p3 · · · pn

Opt
C1 C2 C3

· · ·
Cn

y1 y2 y3 · · · yn huge ℓ1-error

SPF
Cn C1 C2 C3

· · · SPF ≈ Opt + n · ℓ1

y1 y2 y3 · · · yn huge ℓ1-error

SPF
C1 C2 C3

· · ·
Cn

SPF = Opt + 0 · ℓ1
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Length Predictions and ν-error [Im, Kumar, Qaem, Purohit 2021]

Alternative error: ν = Opt({max{pj , yj}}j) − Opt({min{pj , yj}}j)

p1 p2 p3 p4 p5

y1 y2 y3 y4 y5

Error-tracker algorithm: min
{

(1 + ϵ)Opt + O
(

1
ϵ3 log 1

ϵ

)
ν, 2

ϵ Opt
}

for 1|pmtn|
∑

Cj (seems challenging to generalize)

Issue: Underestimates true difficulty of the following instance

p1 = y1 = . . . = pn−1 = yn−1 = 1, but pn = n2 and yn = 0.

ν = n2 + n = Θ(n2) vs SPF(yj , pj) − Opt(pj) = Ω(n3)
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Permutation Predictions

Permutation predictions: predict an order of jobs: σ̂ : [n] → [n]

Motivation: knowing WSPT order is often sufficient for good approximations:
− optimal for 1|(pmtn)|

∑
wjCj [Smith 1956]

− 2-competitive for P|rj , pmtn|
∑

wjCj [M. & Schulz 2004]
− 5.83-competitive for R|rj , pmtn|

∑
wjCj [Lindermayr & M. 2022]

p1 p2 p3

y1 y2 y3

y1 y2 y3

(W)SPT order p3 ≤ p1 ≤ p2

Indicate correct order y3 ≤ y1 ≤ y2, but ℓ1, ν > 0

Error measure: quantifies effect of inversions I between σ̂ and true
WSPT order on list scheduling according to predicted order:

ηS =
∑

(i ,j)∈I
(wipj − wjpi)

▶ For 1||
∑

wjCj this is exactly ηS = Opt(σ̂) − Opt(σ).
▶ ηS captures structure instead of irrelevant numerical values.
▶ Permutation predictions are efficiently PAC-learnable w.r.t. ηS .
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PTS and Permutation Predictions (1)

PTS for weighted jobs on a single machine 1|pmtn|
∑

wjCj

▶ prediction-clairvoyant AC : WSPT (monotone optimal) [Smith 1956]

Schedule jobs in WSPT orderSchedule jobs in predicted order σ̂

3 4 2 1 1

▶ non-clairvoyant AN : WRR (monotone 2-competitive) [Kim, Chwa 2003]

min
{

1
1 − λ

·
(

1 + ηS

Opt

)
,

1
λ

·

2

}
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PTS and Permutation Predictions (2)

PTS for m identical machines and release dates P|rj , pmtn|
∑

wjCj

▶ prediction-clairvoyant AC : P-WSPT (monotone 2-competitive)
[M. and Schulz 2004]

3
2
1

at any time

unfinished released jobs in WSPT orderunfinished released jobs in predicted order σ̂

schedule m first jobs

▶ non-clairvoyant AN : WDEQ (monotone 3-competitive)
[Beaumont, Bonichon, Eyraud-Dubois and Marchal 2012]

min
{

1
1 − λ

·
(

2 + ηS

m · Opt

)
,

1
λ

·

3

}
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PTS and Permutation Predictions (3)
PTS on m unrelated machines R|rj , pmtn|

∑
wjCj :

Predict machine allocation and permutation for each machine σ̂1, . . . , σ̂m

▶ prediction-clairvoyant AC : MinIncrease+WSPT (mon. 5.83-comp.)
[Lindermayr and M. 2022]

preemptive WSPT per machinepreemptive predicted order σ̂i per machine i

4
3
2
1

now

∞

∞

min. increase of
total obj. value

assign job j to
predicted machine i
i.e. i ∈ [m] s.t. j ∈ σ̂i

arriving job

▶ non-clairvoyant AN : Proportional Fairness (mon. 128-competitive)
[Im, Kulkarni and Munagala 2018]

min
{

1
1 − λ

·
(

5.8284 + ηR

Opt

)
,

1
λ

·

128

}
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Sensitivity Experiments

▶ Single machine, unweighted jobs (PTS equals algorithm in [KPS18])
▶ Synthetic instances sampled from Pareto-distribution with shape 1.1

Many small jobs and few very large jobs!
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Online Learning Experiments

▶ learn prediction from previous instances
▶ already after one round performance improves substantially
▶ such instances can be learned fast in practice (detect long jobs)
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Intermediate Summary

Non-clairvoyant scheduling with predictions
▶ Discussion of length and permutation prediction and error measures

▶ Powerful algorithmic framework that admits (blackbox) algorithms
with certain properties (error-dependent comp. ratio, monotone)

▶ First results for weights, release dates, multiple machine models

Other scheduling results involving predictions
▶ load balancing [Lattanzi, Lavastida, Moseley, Vassilvitskii SODA 2020]

▶ flowtime minimization [Azar, Leonardi, Touitou STOC 2021, SODA 2022]

▶ speed scaling [Bamas, Maggiori, Rohwedder, Svensson NeurIPS 2020], [Antoniadis,
Ganje, Shahkarami SWAT 2022]
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Online Routing Problems
more general online graph problems incl. network design
Joint work with Giulia Bernardini (Trieste), Alexander Lindermayr (Bremen), Alberto

Marchetti-Spaccamela (Rome), Leen Stougie & Michelle Sweering (CWI).



The Online Traveling Salesperson Problem

Input: Requests (x , r) arrive online at time r at location x
Task: Determine a tour of minimum total length (makespan)

visiting every request after its arrival and returning to the origin.

Replan

o

Ignore

o

▶ Replan and Ignore: 2.5-competitive [Ausiello et al. 2001]

▶ SmartStart: 2-competitive, best possible [Ascheuer et al. 2000]

Generalization: Online Dial-a-Ride (tour for transportation requests)
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Graph Problems with Predictions and Roadmap

Other works: graph problems with predictions
▶ Network design [Azar, Panigrahi, Touitou, SODA 2022], [Moseley, Xu, AAAI 2022]

▶ Graph exploration [Eberle, Lindermayr, Nölke, M., Schlöter, AAAI 2022]

▶ Minimum Spanning Tree with queries [Erlebach, de Lima, M., Schlöter, 2022]

Roadmap

1. Universal error measure for input predictions based on edge covers
in suitably defined graphs

2. Algorithms with error-dependent competitive ratio
− Online TSP (and Online Dial-a-Ride)
− Online Steiner Tree (Online Facility Location, Steiner Forest)
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Prediction Model
Prediction: request sequence (release dates and points/nodes)

Possible errors in:
(i) location, (ii) time, and (iii) length of sequence

Goals of an error measure:
▶ distinguish “good” and “bad” predictions
▶ quantify the effect of a erroneous prediction on the objective value

of an algorithm trusting the predictions

Intuition for detour error:
▶ Any “good” algorithm needs to trust predictions to some extent.

▶ An unpredicted actual request arrives (unexpected).

o
(x̂ , r̂) (x , r)

≤ r − r̂ d(x , x̂)
. . . might be many options!
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Minimum-Cost Edge Cover
Idea: Model potential detours for serving unexpected requests as complete
bipartite graph with edge cost γ((x , r), (x̂ , r̂)) = (r − r̂)+ + d(x , x̂).

Similarly, absent predicted requests can be covered by predicted requests.

R \ R̂ R̂

min-cost edge cover of
R \ R̂ with value Γ(R, R̂)

R̂ \ R R

min-cost edge cover of
R̂ \ R with value Γ(R̂, R)

Edge Cover Error Measure: Λ(R̂, R) = Γ(R, R̂) + Γ(R̂, R)

Nicole Megow 22
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Learning-Augmented Algorithms
Common approach: combine online & offline algorithms in a clever way

→ switching between algorithms might be expensive

Algorithm DelayedTrust
T̂ : optimal tour on prediction; Ĉ : its length; α > 0 confidence param.

(i) Follow blackbox online algorithm A as long as for time t holds
t ≤ α · Ĉ − d(p(t), 0). (robustness)

(ii) Move the server to the origin.
(iii) Follow T̂ and replan if actual unexpected request arrives. (consist.)

Theorem
For every α > 0 and ρ-competitive online algorithm A, DelayedTrust
has a competitive ratio of at most

min
{

(1 + α)
(

1 + 2 · Λ
OPT

)
, 1 +

(
1 + 1

α

)
· ρ

}
.
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Instance

Edge cover bipartite graph

R ′ ⊆ R \ R̂

(x̂ , r̂) ∈ R̂

Hyperedge cost: length of opt. tour for R ′ which starts in x̂ at time r̂ .

Hyperedge cover error: min-cost hyperedge cover using hyperedges of
size at most k.

→ configurable, stronger, admits refined bounds for our algorithm

Nicole Megow 24
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Further Applications

▶ Universal hyperedge cover error for online graph (metric) problems
− captures error in # requests, location and time
− nice properties, configurable, seems to capture “true” error very well

▶ Bounds for (new and old) learning-augmented algorithms
− first framework for online TSP and Dial-a-Ride (online-time)
− new bounds for known algorithm for network design (online-list)

[Azar, Panigrahi, Touitou SODA 2022]
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▶ Bounds for (new and old) learning-augmented algorithms
− first framework for online TSP and Dial-a-Ride (online-time)
− new bounds for known algorithm for network design (online-list)

[Azar, Panigrahi, Touitou SODA 2022]

Setting Problem Algorithm Error-dependency

online-time TSP SmartTrust (1 + α) · OPT + 3 · Λk
DARP SmartTrust (1 + α) · OPT + 3 · Λk

online-list
Steiner Tree APT O(1) · OPT + O(log(k)) · Λk
Steiner Forest APT O(1) · OPT + O(k) · Λk
Facility Location APT O(1) · OPT + O(log(k)) · Λk
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Future & Discussion

This is a fascinating line of research with many open directions!

Some further directions

▶ Universal error measure for input predictions − further applications?
▶ Formalize what constitutes a good error measure
▶ Prediction models: input vs. action, predict less
▶ What is learnable? Integrate learning into algorithm design!

Thank you.
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