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Prelude
When formulating scheduling problems as mathematical 
optimization problems (MOPs)
• in particular, (mixed)-integer linear optimization problems 
the primary design decision is which variables to use, e.g.,
• start/completion dates
• linear ordering variables
• traveling salesman variables
• assignment and positional date variables
• time-indexed variables
Constraints are then introduced to represent or approximate the 
feasible set (and the objective function)
• linear constraints give rise to polyhedra
The study of these scheduling polyhedra yields structural and
algorithmic insights
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Start (or Completion) Date Variables

• Decision variables are operation (or job) start times t j
• continuous variables only

• The combinatorial structure of (nonpreemptive) 
scheduling,
• no two operations i and j on a same machine can 

overlap,
may be modeled by disjunctive constraints
• operation i is completed before operation j starts 

or i starts after j is completed:
t j − t i > di, j ∨ t i − t j > d j, i
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Disjunctive Scheduling Constraints

t j − t i > di, j ∨ t i − t j > d j, i

• The delay di, j may include operation i’s processing 
time and a switchover cost:   di j = pi + s i j

This allows to model
• release dates: d0 j = r j  (with t0 = 0)
• precedence constraints:  d j, i = +∞, i.e.,

t j − t i > di, j if i → j
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Job Shop Scheduling
Balas (1985) was motivated by job-shop scheduling:
• Each job consists of a sequence of nonpreemptive operations, 

each one on a specified machine
• Makespan objective: the time to complete all work
Formulated as finding a critical path in a “disjunctive” 
network with operations as nodes and directed arcs 
representing constraints on operation pairs:
• Precedence arcs (operations of the same job)
• Disjunctive arc pairs (no overlap when on the same machine)
A selection specifies a choice for each disjunctive pair
• Each selection leads to a critical path (project) network
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Main Results in Balas (1995)
The set of all feasible start time vectors t is the union of 
(full-dimensional, unbounded) polyhedra

• one for each selection
The scheduling polyhedron is its closed convex hull 
Main focus is on the single machine with release dates 
and no precedences (scheduling polyhedron on a clique)

• Extreme points, as “minimal” feasible schedules
• Extreme rays correspond to idle time insertion

and on its facets
• Facets with small support
• Lifting from subcliques
• Separation
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Computational Experiments
Applegate & Cook (1991) implemented Balas’s separation 
algorithm for small support cuts ( < 5 operations)

• Later generalized as Fenchel cuts (Boyd 1995), and 
“local cuts” (Applegate at al. 1998)

and compared, on 10x10 instances, with
• Combinatorial bounds (Carlier 1982)
• Large support “basic cuts” of Dyer and Wolsey (1990)

→ Modest reductions in integrality gaps
(for makespan objective)
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Toward Simpler Polyhedral Descriptions

The Polytime Equivalence of Optimization and 
Separation (GLS 1981) suggests that a family (Pf )f∈F
of polyhedra may be easier to describe if the associated 
linear optimization problem, min{ w x : x∈Pf } is 
solvable in polytime for any objective weights w
• For machine scheduling, using the completion time 

variables Cj instead of the start times, 
• a simple affine change of variables, 
this leads to considering minsum objectives of 
minimizing a weighted sum of completion times:

min Σ j w j Cj
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Single Machine Scheduling
A classical problem: 1|| Σ wj Cj : Given
• one machine, which can only process one job at a time
• n jobs J1,…, Jn released at date 0, with

• known processing times pj > 0 and 
• known weights wj > 0 of each job Jj

find a schedule of these n jobs to minimize Σwj Cj
Solved by Smith’s Ratio Rule: process the jobs as soon 
as possible and in “increasing” (nondecreasing) order of 
the ratios pj / wj

• a.k.a.: WSPT rule,  cµ rule (a Gittins index)
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Simple Scheduling Polyhedra
Theorem (Wolsey 1985, Q 1993)
• For problem  1|| Σj∈N wj Cj the convex hull of the 

completion time vectors C of all feasible schedules is  
the polyhedron 

Pg = { C∈Rn : Σj∈A pj Cj > g(A)   ∀A⊆N  }
where g(A) = ½ (Σj∈A pj )2 + ½ Σj∈A pj
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• The convex hull of the permutation schedules C
(without idle time and without preemption) is its facet

Qg = Pg ∩{ C∈Rn : Σj∈N pj Cj = g(N) }
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More on Simple Scheduling Polyhedra
• g is a supermodular set function:

g(A∪B) + g(A∩B)  > g(A) + g(B)   ∀A,B∈N
• The scheduling polyhedron Pg is therefore (an affine 

image of) a supermodular polyhedron, 
and Qg is its base polytope

• Smith’s rule is (up to an affine transformation) 
a version of the greedy algorithm for supermodular
(or submodular) polyhedra:

OPT  := min{Σj∈N wj Cj : Σj∈A pj Cj > g(A) ∀A ⊆ N}
= min{Σj∈N (wj / pj) xj : Σj∈A xj > g(A) ∀A ⊆ N}



Precedence Constrained 
Single Machine Scheduling

• Problem 1|prec| Σ wj Cj is NP-hard
Series inequalities: the simple precedence constraints 

Ck − Cj > pk generalize, when job subsets J → K
i.e., when j → k for all j∈J and k∈K

to:           p(J ) Σk∈K pk Ck − p(K) Σj∈J pj Cj > h(J, K)
where  h(J, K) = p(J ) g(K) + p(K) g(J ) − p(K) Σj∈J pj

2

Q &Wang (1991): (N, →) is series-parallel iff for any positive 
pj’s, the scheduling polyhedron is defined by  

• the parallel inequalities  Σj∈A pj Cj > g(A) ∀A⊆N
• and the series inequalities for all J → K

M.Queyranne On Polyhedral Approaches to Scheduling Problems 12



Series and Parallel Inequalities
The separation problem for series inequalities is:
• easy when prec. is series-parallel (Schulz 1996a)
• NP-hard for general prec. (Kobayashi et al. 2012)
• but polytime separation for a larger class of inequalities 

from projection of an extended formulation using also 
linear ordering variables (Wolsey 1989)

Computational experiments
• random instances, heuristic separation for series ineq.

• relaxation gap < 1% (Q and Wang 1991, n < 160)
• branch and cut (Margot et al. 2003, n < 120)
Extensions and subsequent related work
 characterizing facets, N-sparse prec, 2D Gantt charts…
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A Change of Perspective:
Approximation Algorithms

• Are scheduling polyhedra useful to derive 
approximation algorithms for scheduling problems?

Schulz’s Lemma (1996b): If vector C satisfies the parallel 
inequalities then list scheduling in order of the 
components of C gives a schedule CL satisfying the   
job-by-job bounds: CL

j < 2 Cj for each j∈N
⇒ Σ wj CLP

j > ½ OPT and Σ wj CL
j < 2 OPT for 1|prec| Σ wj Cj

• in fact, every feasible schedule consistent with the Sidney 
decomposition is  2-approximate (Chekuri and Motwani
1999, Margot et al 2003)

Many extensions and related work
• various scheduling environments, asymptotic optimality…
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Release Dates & On-Line Scheduling

Each job Jj only becomes available for processing 
at its release date rj > 0.   

• In classical, “off-line” problems, the release 
dates rj and all other problem data are known 
from the beginning.

• In on-line problems, one only learns the 
characteristics of a job Jj (including its release 
date rj), or even its existence, at date rj

• The off-line problem  1| rj | Σ wj Cj is NP-hard.

On Polyhedral Approaches to Scheduling Problems



M.Queyranne 16

Release Dates: WSPTA

WSPTA, a “natural” extension  of the WSPT rule : 
when the machine becomes available, 
process an Available job with best WSPT ratio

• WSPTA may produce schedules that are 
arbitrarily worse than the optimum 
(even with 2 jobs only !)
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Asymptotic Optimality

An algorithm H is asymptotically optimal
(relative to a given instance class J) if

where |I| is the size of instance I

• here, the size |I| is the number n of jobs

1
)(*
)(suplim || =∞→ Iz

Iz H

I
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Why “Asymptotic Optimality”?

(1) Drawbacks of traditional performance measures 
(performance or approximation ratio, competitive ratio):

• conservative (worst case), hence “pessimistic”
• bad instances are often either:

– very small, or
– contrived, with extreme data values

• most results have limited practical value
(2) On large (uncontrived) instances, simple heuristics 

(e.g., based on Smith’s ratio rule) may empirically 
outperform heuristics designed for better 
performance/competitive ratio

– e.g., Savelsbergh, Uma & Wein (2005)
(3) A well-accepted, desirable property in the study of 

stochastic processes and stochastic control
On Polyhedral Approaches to Scheduling Problems
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Asymptotic optimality of WSPTA

Theorem (Chou, Q. & Simchi-Levi, 2006): 
The algorithm WSPTA is asymptotically 
optimal for every uniformly bounded instance 
class of problem 1| rj, on-line| Σ wj Cj

The proof uses an LP relaxation with
• a decomposition of the objective using    

“priority-work sets, and 
• a “work delay lemma”
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Uniform Parallel Machines
This asymptotic optimality result extends to 

uniform parallel machines (machines 
with different speeds)

Theorem (Chou, Q. & Simchi-Levi, 2006): 
The algorithm WSPTA is asymptotically
optimal for every uniformly bounded 
instance class of   Qm | rj, on-line| Σ wj Cj
with a fixed set of m uniform machines.

On Polyhedral Approaches to Scheduling Problems
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Stochastic On-Line Scheduling

Assume 
• the processing times are independent random 

variables; and
• only the weight and expected processing time are 

known when a job appears (at its release date)
A scheduling policy is
• adaptive if it can use any information available at 

date t for making a decision at that date;
• weakly non-anticipative if it does not know the 

processing time of a job before the job is complete.
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Stochastic On-Line Scheduling
Stochastic on-line scheduling on a single machine with 

release dates (Chou, Liu, Q. & Simchi-Levi, 2006)
Theorem: The WESPTA algorithm is asymptotically 

optimal relative to the class of all adaptive and weakly 
non-anticipative policies, for every uniformly bounded 
instance class of 1| rj,  pj ~ stoch, on-line| Σ wj Cj

The proof uses:
• machine capacity constraints (“conservation laws”) 
• a Pmtn-WSPT algorithm applied to the deterministic

instance with processing times E[pj ]
• a Chernoff bound
• the notion of work delay for a given priority level
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Stochastic Shop Scheduling

Each job Jj consists of m operations Jj,1 ,…, Jj,m

• operation Jj,i must be processed on machine Mi

• its processing time pj,i is a random variable
Let pj = (pj,1 ,…, pj,m ) denote the resulting random 

vector
Assume these random vectors are independent

On Polyhedral Approaches to Scheduling Problems
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Stochastic Shop Scheduling (2)
Xia, Shantikumar & Glynn (2000):  The processing times 

are statistically exchangeable across machines if, for 
every permutation α of {1, …, m}, the random vector   
(pj,α(1), …, pj,α(m)) has the same distribution as random 
vector pj = (pj,1, …, pj,m )

,

Theorem (Liu, Q. & Simchi-Levi, 2005):
The WESPTA algorithm, extended to (non-permutation) 
flowshop and open shop problems, is asymptotically
optimal, relative to the class of all adaptive and weakly 
non-anticipative policies, for every uniformly bounded 
instance class with independent job processing time 
vectors that are statistically exchangeable across 
machines.
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Back to Deterministic Shop Scheduling:
From Makespan to Min-Sum Objectives

Q and Sviridenko (2002): For shop scheduling problems with
• multiple stages, each consisting of mh parallel machines 
• jobs J j consisting of operations Oh j each on a prescribed stage, 

with processing time ph j and release dates rh j  , and with 
precedence constraints between operations

• sets S of operations with CS := max{Ch j : (h,j) ϵ S }
• operation and job completion times, stage loads,… 

and set weights wS
Assume a ρ-approximation for the makespan (without release 
dates!), then using an LP relaxation in operations Ch j
• constraints for release dates, simple precedence constraints, stage 

capacity (parallel inequalities) and job capacity constraints
leads to a 2eρ-approximation for the min-sum obj. Σ wS CS
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Time-Indexed Formulations
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Single Unit Commitment Problem,
Single Machine Production Planning

• Finite, discrete time horizon, T = [1,…, n]
• Machine is in one of two states in each period t∈T : 
 yt = 1 if machine is On, 0 if it is Off
 given initial state y0 (and relevant earlier history)

• Actions, in each t∈T : 
 Switch on:   z t = 1 if yt−1 = 0 and yt = 1
 Switch off: w t = 1 if yt−1 = 1 and yt = 0

• 3-bin (binary variables) model [Garver, 1963]
• zt = ( yt − yt−1)+,   wt = ( yt−1 − yt)+,    zt − wt = yt − yt−1
• Leads to 2-bin models, say, with y and z variables only
• Also 1-bin model, with the y state variables only
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General Dynamic Programming Approach

On

Off

• General objective function (additive over intervals)
• General constraints (on individual intervals)
Shortest path formulation (tight extended formulation):
• O(n 2 ) binary variables (flow x1 and x2 , state y, possibly 

switch on z and/or switch off w), and O(n) constraints
Question: Tight formulations with O(n) variables (in either the 

2-bin or 1-bin model)?
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Bounded UP/Down Times

We are given bounds on interval lengths:
• lower and upper bounds 1 < αt < β t on the 

length of an on-interval starting in period t
• lower and upper bounds 1 < γ t < δ t on the 

length of an off-interval starting in period t
 These (nonstationary) bounds may be adjusted to 

take into account initial and terminal conditions
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A “Natural” MIP Formulation

zt = yt (1− yt−1 )
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A Tighter Formulation
• Replace the “forward looking” lower bound constraints

with the “backward looking” constraints

• Similarly, replace

with
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A Simple Observation

Proposition
The resulting formulation (2), (11), (6), (12), (8), (9) with        
y, z, w∈[0,1]n is valid and tighter than the “natural” 
formulation (2)-(9) with y, z, w∈[0,1]n

• Generalizes results in [Wolsey, 1998] and [Rajan & Takriti, 2005] 
to nonstationary lower bounds

Questions: When is such formulation ideal
• in the 3-bin space, or the 2-bin space of the (y, z) variables?
• in the 1-bin space of the state variables y?
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Subsets of Bound Types and Polytopes
Questions: When is such formulation ideal
• in the 3-bin space, or the 2-bin space of the (y, z) variables?
• in the 1-bin space of the state variables y?

We generalize these questions to any subset B ⊆ {α, β, γ, δ } of 
bound types in force: let 

• Z(B) = {(y, z)∈{0,1}n+n satisfying the bound constraints in B}
• Y (B) = projy Z(B) 

Remark:  Z(∅) = {(y, z)∈{0,1}n+n : (2)-(4)} and Y (∅) = {0,1}n
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The given bounds in B satisfy weak monotonicity if
t + εt < u + εu for  0 < t < u < n and  ε ∈B

 By waiting one period one cannot be forced to switch on or off earlier

For every ε ∈{α, β, γ, δ } and t∈[1, n] let
sB (ε , t ) = min{ u ∈[0, n] : u + εu > t }

denote the earliest start period of an on- (if ε = α or β ) or 
(otherwise) off- interval that may end after t.
• If the lower bound type α ∉B (resp., γ ∉B)  then let all αt = 1 (resp., 

all  γ t = 1)  and  sB (α , t ) = t (resp., sB (γ , t ) = t )
• If the upper bound type β ∉B (resp., δ ∉B)  then let all βt = n (resp.,  

all δ t = n)  and  sB (β , t ) = 0  (resp., sB (δ , t ) = 0 )

By weak monotonicity, for all B, ε ∈B and t∈[1, n] 
u ∈[sB (ε , t ), t ]   iff ( u ∈[0, n] and u + εu > t )

Weak Monotonicity and Earliest Interval Starts
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Formulation for Z(B)
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Theorem: Under weak monotonicity, for every B the polytope          
PZ (B) defined by (35)-(42) is an ideal formulation of Z(B)
 i.e.,  PZ (B) = conv Z(B)

• How do we prove this?

with initial values v0 = y0 and u0 = 0
Observation: There is a one-to-one unimodular transformation 
between the (u, v) and (y, z) variables, given by

Ideal Formulation
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Extended Formulation

Proposition: The polytope QUV (B) defined by (46)-(55) and the linking 
constraints (43)-(44) is an extended formulation for conv Z(B).
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Theorem: The polytopes QUV (B) and PZ  (B) are integral, and 
PZ (B) = conv Z(B).

 Generalizes results in [Malkin, 2003] and [Rajan & Takriti, 2005] to 
upper bounds and nonstationary data

Remark: in the (y, z) space the different bound types do not interact:

Ideal Extended Formulation
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In the 1-Bin Space of the State Variables y?

Alternating inequality:  Odd(S, y) < (or > ) µ for some integer µ
The case of lower bounds only:
Theorem: conv Y (α, γ ) is given by the alternating inequalities:

(i) Odd(S, y) > 0 S ⊆ [sB(α, t), t] odd, and t∈[0, n]
(ii) Odd(S, y) < 1 S ⊆ [sB(γ , t), t] odd, and t∈[0, n]

How do we prove this?
Let polytope P = { y∈[0, 1]n : (i) and (ii) }:
• (i) and (ii) are valid for Y (α, γ ), hence  projy PZ (α, γ ) ⊆ P
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Separating the Alternating Inequalities
To prove the converse inclusion, P ⊆ projy PZ (α ,γ ), consider y*∈ P
and let for all t

F(t) = max{ Odd(S, y*) : S ⊆ [0, t], |S| odd}
G(t) = max{Even(S, y*) : S ⊆ [0, t], |S| even}

• The resulting vectors F and G can be computed in linear time by 
Dynamic Programming

• In particular, the DP recursions imply that (u, v) = (G, F) satisfy 
(46)-(55), i.e., that (G, F) ∈ proju,v QUV (α ,γ ) 

• Therefore y*∈ projy QUV (α ,γ ) = projy PZ (α ,γ )     QED
Corollary: There is a linear time separation algorithm for             

conv Y (α, γ ): given y*∈ [0,1]n compute F and G and check 
whether (G, F) satisfies (46)-(55)
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Upper Bounds Only
The case of upper bounds only is much easier:
Proposition: conv Y (β, δ ) is given by 

Corollary: conv Y (α, γ ) = conv Y (α ) ∩ conv Y (γ ) 
conv Y (β, δ ) = conv Y (β ) ∩ conv Y (δ )

• Combining the two lower bound types, or the two upper bound types, 
does not give rise to new facets when projecting onto the y-subspace

u
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Related Polytopes?
On the other hand, the structure of conv Y (α, β ) is not well 
understood 
• even in the case of stationary bounds α = α (i.e., αt = α for 

all t) and β = β
• For example:

are valid, and facet defining when t and n – t are sufficiently 
large

Remark: Exchanging the roles of the on and off machine states 
and switch on off actions, all results about Y (α, β ) and its 
convex hull translate (with an affine change of variables) into 
equivalent results about Y (γ, δ) and its convex hull
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