On Polyhedral Approaches to Scheduling Problems

Maurice Queyranne
Sauder School of Business at UBC

Based on joint work with many co-authors...

Scheduling Seminar

 https://schedulingseminar.com/June 22, 2022

Prelude

When formulating scheduling problems as mathematical optimization problems (MOPs)

- in particular, (mixed)-integer linear optimization problems the primary design decision is which variables to use, e.g.,
- start/completion dates
- linear ordering variables
- traveling salesman variables
- assignment and positional date variables
- time-indexed variables

Constraints are then introduced to represent or approximate the feasible set (and the objective function)

- linear constraints give rise to polyhedra

The study of these scheduling polyhedra yields structural and algorithmic insights

Start (or Completion) Date Variables

- Decision variables are operation (or job) start times \boldsymbol{t}_{j} - continuous variables only
- The combinatorial structure of (nonpreemptive) scheduling,
- no two operations i and j on a same machine can overlap, may be modeled by disjunctive constraints
- operation i is completed before operation j starts or i starts after j is completed:

$$
t_{j}-t_{i} \geq d_{i, j} \vee t_{i}-t_{j} \geq d_{j, i}
$$

Disjunctive Scheduling Constraints

$$
t_{j}-t_{i} \geq d_{i, j} \vee t_{i}-t_{j} \geq d_{j, i}
$$

- The delay $d_{i, j}$ may include operation i 's processing time and a switchover cost: $d_{i j}=p_{i}+s_{i j}$
This allows to model
- release dates: $d_{0 j}=r_{j}$ (with $t_{0}=0$)
- precedence constraints: $d_{j, i}=+\infty$, i.e.,

$$
t_{j}-t_{i} \geq d_{i, j} \text { if } i \rightarrow j
$$

ON THE FACIAL STRUCTURE OF SCHEDULING POLYHEDRA

Egon BALAS
Carnegie-Mellon University, Schenley Park, Pittsburgh, PA 15213, USA

Received 28 November 1983
Revised manuscript received 28 January 1985
Dedicated to George B. Dantzig for his 70th birthday.

A well-known job shop scheduling problem can be formulated as follows. Given a graph G with node set N and with directed and undirected arcs, find an orientation of the undirected arcs that minimizes the length of a longest path in G. We treat the problem as a disjunctive program, without recourse to integer variables, and give a partial characterization of the scheduling polyhedron $P(N)$, i.e., the convex hull of feasible schedules. In particular, we derive all the facet inducing inequalities for the scheduling polyhedron $P(K)$ defined on some clique with node set K, and give a sufficient condition for such inequalities to also induce facets of $P(N)$. One of our results is that any inequality that induces a facet of $P(H)$ for some $H \subset K$, also induces a facet of $P(K)$. Another one is a characterization of adjacent facets in terms of the index sets of the nonzero coefficients of their defining inequalities. We also address the constraint identification problem, and give a procedure for finding an inequality that cuts off a given solution to a subset of the constraints.

Key words: Scheduling, Disjunctive Programming, Polyhedral Combinatorics, Facets of the Scheduling Polyhedron.

Job Shop Scheduling

Balas (1985) was motivated by job-shop scheduling:

- Each job consists of a sequence of nonpreemptive operations, each one on a specified machine
- Makespan objective: the time to complete all work

Formulated as finding a critical path in a "disjunctive" network with operations as nodes and directed ares representing constraints on operation pairs:

- Precedence arcs (operations of the same job)
- Disjunctive arc pairs (no overlap when on the same machine)

A selection specifies a choice for each disjunctive pair

- Each selection leads to a critical path (project) network

Main Results in Balas (1995)

The set of all feasible start time vectors t is the union of (full-dimensional, unbounded) polyhedra

- one for each selection

The scheduling polyhedron is its closed convex hull
Main focus is on the single machine with release dates and no precedences (scheduling polyhedron on a clique)

- Extreme points, as "minimal" feasible schedules
- Extreme rays correspond to idle time insertion and on its facets
- Facets with small support
- Lifting from subcliques
- Separation

Computational Experiments

Applegate \& Cook (1991) implemented Balas's separation algorithm for small support cuts (≤ 5 operations)

- Later generalized as Fenchel cuts (Boyd 1995), and "local cuts" (Applegate at al. 1998)
and compared, on 10x10 instances, with
- Combinatorial bounds (Carlier 1982)
- Large support "basic cuts" of Dyer and Wolsey (1990)
\rightarrow Modest reductions in integrality gaps
(for makespan objective)

Toward Simpler Polyhedral Descriptions

The Polytime Equivalence of Optimization and

 Separation (GLS 1981) suggests that a family $\left(P_{f}\right)_{f \in F}$ of polyhedra may be easier to describe if the associated linear optimization problem, $\min \left\{w x: x \in P_{f}\right\}$ is solvable in polytime for any objective weights w- For machine scheduling, using the completion time variables C_{j} instead of the start times,
- a simple affine change of variables, this leads to considering minsum objectives of minimizing a weighted sum of completion times: $\min \Sigma_{j} w_{j} C_{j}$

Single Machine Scheduling

A classical problem: $1 \| \Sigma w_{j} C_{j}$: Given

- one machine, which can only process one job at a time
- n jobs J_{1}, \ldots, J_{n} released at date 0 , with
- known processing times $p_{j} \geq 0$ and
- known weights $w_{j}>0$ of each job J_{j}
find a schedule of these n jobs to minimize $\Sigma w_{j} C_{j}$
Solved by Smith's Ratio Rule: process the jobs as soon as possible and in "increasing" (nondecreasing) order of the ratios p_{j} / w_{j}
- a.k.a.: WSPT rule, $c \mu$ rule (a Gittins index)

Simple Scheduling Polyhedra

Theorem (Wolsey 1985, Q 1993)

- For problem $1 \| \Sigma_{j \in N} w_{j} C_{j}$ the convex hull of the completion time vectors C of all feasible schedules is the polyhedron

$$
\boldsymbol{P}_{g}=\left\{C \in \mathbf{R}^{n}: \Sigma_{j \in A} p_{j} C_{j} \geq g(A) \quad \forall A \subseteq N\right\}
$$

where

$$
g(A)=1 / 2\left(\Sigma_{j \in A} p_{j}\right)^{2}+1 / 2 \Sigma_{j \in A} p_{j}^{2}
$$

- The convex hull of the permutation schedules C (without idle time and without preemption) is its facet

$$
Q_{g}=P_{g} \cap\left\{C \in \mathbf{R}^{n}: \Sigma_{j \in N} p_{j} C_{j}=g(N)\right\}
$$

More on Simple Scheduling Polyhedra

- g is a supermodular set function:

$$
g(A \cup B)+g(A \cap B) \geq g(A)+g(B) \quad \forall A, B \in N
$$

- The scheduling polyhedron P_{g} is therefore (an affine image of) a supermodular polyhedron, and Q_{g} is its base polytope
- Smith's rule is (up to an affine transformation) a version of the greedy algorithm for supermodular (or submodular) polyhedra:

$$
\text { OPT } \begin{aligned}
: & =\min \left\{\sum_{j \in N} w_{j} C_{j}: \Sigma_{j \in A} p_{j} C_{j} \geq g(A) \forall A \subseteq N\right\} \\
& =\min \left\{\Sigma_{j \in N}\left(w_{j} / p_{j}\right) x_{j}: \Sigma_{j \in A} x_{j} \geq g(A) \forall A \subseteq N\right\}
\end{aligned}
$$

Precedence Constrained Single Machine Scheduling

- Problem 1 $|\mathrm{prec}| \sum w_{j} C_{j}$ is NP-hard

Series inequalities: the simple precedence constraints
$C_{k}-C_{j} \geq p_{k} \quad$ generalize, when job subsets $J \rightarrow K$ i.e., when $j \rightarrow k$ for all $j \in J$ and $k \in K$
to:

$$
p(J) \sum_{k \in K} p_{k} C_{k}-p(K) \Sigma_{j \in J} p_{j} C_{j} \geq h(J, K)
$$

where $h(J, K)=p(J) g(K)+p(K) g(J)-p(K) \Sigma_{j \in J} p_{j}^{2}$
Q \& Wang (1991): (N, \rightarrow) is series-parallel iff for any positive p_{j} 's, the scheduling polyhedron is defined by

- the parallel inequalities $\Sigma_{j \in A} p_{j} C_{j} \geq g(A) \forall A \subseteq N$
- and the series inequalities for all $J \rightarrow K$

Series and Parallel Inequalities

The separation problem for series inequalities is:

- easy when prec. is series-parallel (Schulz 1996a)
- NP-hard for general prec. (Kobayashi et al. 2012)
- but polytime separation for a larger class of inequalities from projection of an extended formulation using also linear ordering variables (Wolsey 1989)
Computational experiments
- random instances, heuristic separation for series ineq.
- relaxation gap $<1 \%$ (Q and Wang $1991, n \leq 160$)
- branch and cut (Margot et al. 2003, $n \leq 120$)

Extensions and subsequent related work

- characterizing facets, N -sparse prec, 2D Gantt charts...

A Change of Perspective: Approximation Algorithms

- Are scheduling polyhedra useful to derive approximation algorithms for scheduling problems?
Schulz's Lemma (1996b): If vector C satisfies the parallel inequalities then list scheduling in order of the components of C gives a schedule C^{L} satisfying the job-by-job bounds: $C^{L}{ }_{j}<2 C_{j}$ for each $j \in N$
$\Rightarrow \sum w_{j} C^{L P}{ }_{j}>1 / 2$ OPT and $\sum w_{j} C_{j}^{L}<2$ OPT for $1 \mid$ prec $\mid \sum w_{j} C_{j}$
- in fact, every feasible schedule consistent with the Sidney decomposition is 2-approximate (Chekuri and Motwani 1999, Margot et al 2003)
Many extensions and related work
- various scheduling environments, asymptotic optimality...

Release Dates \& On-Line Scheduling

Each job J_{j} only becomes available for processing at its release date $r_{j} \geq 0$.

- In classical, "off-line" problems, the release dates r_{j} and all other problem data are known from the beginning.
- In on-line problems, one only learns the characteristics of a job J_{j} (including its release date r_{j}), or even its existence, at date r_{j}
- The off-line problem $1\left|r_{j}\right| \Sigma w_{j} C_{j}$ is NP-hard.

Release Dates: WSPTA

WSPTA, a "natural" extension of the WSPT rule : when the machine becomes available, process an Available job with best WSPT ratio

- WSPTA may produce schedules that are arbitrarily worse than the optimum (even with 2 jobs only!)

Asymptotic Optimality

An algorithm H is asymptotically optimal (relative to a given instance class J) if

$$
\limsup _{|I| \rightarrow \infty} \frac{z^{H}(I)}{z^{*}(I)}=1
$$

where $|I|$ is the size of instance I

- here, the size $|I|$ is the number n of jobs

Why "Asymptotic Optimality"?

(1) Drawbacks of traditional performance measures (performance or approximation ratio, competitive ratio):

- conservative (worst case), hence "pessimistic"
- bad instances are often either:
- very small, or
- contrived, with extreme data values
- most results have limited practical value
(2) On large (uncontrived) instances, simple heuristics (e.g., based on Smith's ratio rule) may empirically outperform heuristics designed for better performance/competitive ratio
- e.g., Savelsbergh, Uma \& Wein (2005)
(3) A well-accepted, desirable property in the study of stochastic processes and stochastic control

Asymptotic optimality of WSPTA

Theorem (Chou, Q. \& Simchi-Levi, 2006):
The algorithm WSPTA is asymptotically optimal for every uniformly bounded instance class of problem 1| r_{j}, on-line $\mid \Sigma w_{j} C_{j}$

The proof uses an LP relaxation with

- a decomposition of the objective using "priority-work sets, and
- a "work delay lemma"

Uniform Parallel Machines

This asymptotic optimality result extends to uniform parallel machines (machines with different speeds)

Theorem (Chou, Q. \& Simchi-Levi, 2006):
The algorithm WSPTA is asymptotically optimal for every uniformly bounded instance class of $\mathrm{Q} m \mid r_{j}$, on-line $\mid \Sigma w_{j} C_{j}$ with a fixed set of m uniform machines.

Stochastic On-Line Scheduling

Assume

- the processing times are independent random variables; and
- only the weight and expected processing time are known when a job appears (at its release date)
A scheduling policy is
- adaptive if it can use any information available at date t for making a decision at that date;
- weakly non-anticipative if it does not know the processing time of a job before the job is complete.

Stochastic On-Line Scheduling

Stochastic on-line scheduling on a single machine with release dates (Chou, Liu, Q. \& Simchi-Levi, 2006)
Theorem: The WESPTA algorithm is asymptotically optimal relative to the class of all adaptive and weakly non-anticipative policies, for every uniformly bounded instance class of $1 \mid r_{j}, p_{j} \sim$ stoch, on-line $\mid \Sigma w_{j} C_{j}$

The proof uses:

- machine capacity constraints ("conservation laws")
- a Pmtn-WSPT algorithm applied to the deterministic instance with processing times $E_{[}\left[p_{j}\right]$
- a Chernoff bound
- the notion of work delay for a given priority level

Stochastic Shop Scheduling

Each job J_{j} consists of m operations $J_{j, 1}, \ldots, J_{j, m}$

- operation $J_{j, i}$ must be processed on machine \mathbf{M}_{i}
- its processing time $p_{j, i}$ is a random variable

Let $p_{j}=\left(p_{j, 1}, \ldots, p_{j, m}\right)$ denote the resulting random vector

Assume these random vectors are independent

Stochastic Shop Scheduling (2)

Xia, Shantikumar \& Glynn (2000): The processing times are statistically exchangeable across machines if, for every permutation α of $\{1, \ldots, m\}$, the random vector $\left(p_{j, \alpha(1)}, \ldots, p_{j, \alpha(m)}\right)$ has the same distribution as random vector $p_{j}=\left(p_{j, 1}, \ldots, p_{j, m}\right)$
Theorem (Liu, Q. \& Simchi-Levi, 2005):
The WESPTA algorithm, extended to (non-permutation) flowshop and open shop problems, is asymptotically optimal, relative to the class of all adaptive and weakly non-anticipative policies, for every uniformly bounded instance class with independent job processing time vectors that are statistically exchangeable across machines.

Back to Deterministic Shop Scheduling: From Makespan to Min-Sum Objectives

Q and Sviridenko (2002): For shop scheduling problems with

- multiple stages, each consisting of m_{h} parallel machines
- jobs J_{j} consisting of operations $O_{h j}$ each on a prescribed stage, with processing time $p_{h j}$ and release dates $r_{h j}$, and with precedence constraints between operations
- sets S of operations with $C_{S}:=\max \left\{C_{h j}:(h, j) \in S\right\}$
- operation and job completion times, stage loads,...
and set weights w_{S}
Assume a ρ-approximation for the makespan (without release dates!), then using an LP relaxation in operations $C_{h j}$
- constraints for release dates, simple precedence constraints, stage capacity (parallel inequalities) and job capacity constraints leads to a $2 e \rho$-approximation for the min-sum obj. $\Sigma w_{S} C_{S}$

Time-Indexed Formulations

Single Unit Commitment Problem, Single Machine Production Planning

- Finite, discrete time horizon, $T=[1, \ldots, n]$
- Machine is in one of two states in each period $t \in T$:
- $y_{t}=1$ if machine is On, 0 if it is Off
- given initial state y_{0} (and relevant earlier history)
- Actions, in each $t \in T$:
- Switch on: $z_{t}=1$ if $y_{t-1}=0$ and $y_{t}=1$
- Switch off: $w_{t}=1$ if $y_{t-1}=1$ and $y_{t}=0$
- 3-bin (binary variables) model [Garver, 1963]
- $z_{t}=\left(y_{t}-y_{t-1}\right)^{+}, \quad w_{t}=\left(y_{t-1}-y_{t}\right)^{+}, z_{t}-w_{t}=y_{t}-y_{t-1}$
- Leads to 2-bin models, say, with \mathbf{y} and \mathbf{z} variables only
- Also 1-bin model, with the \mathbf{y} state variables only

General Dynamic Programming Approach

- General objective function (additive over intervals)
- General constraints (on individual intervals) Shortest path formulation (tight extended formulation):
- $\mathrm{O}\left(n^{2}\right)$ binary variables (flow \mathbf{x}^{1} and \mathbf{x}^{2}, state \mathbf{y}, possibly switch on \boldsymbol{z} and/or switch off \boldsymbol{w}), and $\mathrm{O}(n)$ constraints

Question: Tight formulations with $\mathrm{O}(n)$ variables (in either the 2-bin or 1-bin model)?

Bounded UP/Down Times

We are given bounds on interval lengths:

- lower and upper bounds $1 \leq \alpha_{t} \leq \beta_{t}$ on the length of an on-interval starting in period t
- lower and upper bounds $1 \leq \gamma_{t} \leq \delta_{t}$ on the length of an off-interval starting in period t
- These (nonstationary) bounds may be adjusted to take into account initial and terminal conditions

A "Natural" MIP Formulation

$\begin{aligned} z_{t} & \geq y_{t}-y_{t-1} \\ z_{t} & \leq y_{t} \\ z_{t} & \leq 1-y_{t-1} \end{aligned}$	$\begin{array}{ll} \hline t \in[1, n] ; & \\ t \in[1, n] ; & z_{t}=y_{t}\left(1-y_{t-1}\right) \\ t \in[1, n] ; & \end{array}$	(2) (3) (4)
$z_{t} \leq y_{u}$	$u \in\left[t, t+\alpha_{t}-1\right], t \in[0, n] ;$	(5)
$z_{t} \leq \sum_{u=t+1}^{t+\beta_{t}}\left(1-y_{u}\right)$	$t: t \geq 0$ and $t+\beta_{t} \leq n ;$	(6)
$w_{t} \leq 1-y_{u}$	$u \in\left[t, t+\gamma_{t}-1\right], \quad t \in[0, n] ;$	(7)
$w_{t} \leq \sum_{u=t+1}^{t+\delta_{t}} y_{u}$	$t: t \geq 0$ and $t+\delta_{t} \leq n ;$	(8)
$y_{t}-y_{t-1}=z_{t}-w_{t}$	$t \in[1, n] ;$	(9)
$\mathbf{y ,} \mathbf{z}, \mathbf{w} \in\{0,1\}^{n}$.		(10)

A Tighter Formulation

- Replace the "forward looking" lower bound constraints
$z_{t} \leq y_{t}$
$t \in[1, n]$;
$z_{t} \leq y_{u}$

$$
\begin{equation*}
u \in\left[t, t+\alpha_{t}-1\right], \quad t \in[0, n] ; \tag{3}
\end{equation*}
$$

with the "backward looking" constraints

$$
\begin{equation*}
\sum_{\substack{u \in[0, t]: \\ u+\alpha_{u}>t}} z_{u} \leq y_{t} \tag{11}
\end{equation*}
$$

$$
t \in[1, n]
$$

- Similarly, replace
$z_{t} \leq 1-y_{t-1}$
$t \in[1, n] ;$
$w_{t} \leq 1-y_{u}$
$u \in\left[t, t+\gamma_{t}-1\right], \quad t \in[0, n] ;$
with

$$
\sum_{\substack{u \in[0, t]: \\ u+\gamma_{u}>t}} w_{u} \leq 1-y_{t} \quad t \in[1, n]
$$

A Simple Observation

Proposition

The resulting formulation (2), (11), (6), (12), (8), (9) with $\mathbf{y}, \mathbf{z}, \mathbf{w} \in[0,1]^{n}$ is valid and tighter than the "natural" formulation (2)-(9) with $\mathbf{y}, \mathbf{z}, \mathbf{w} \in[0,1]^{n}$

- Generalizes results in [Wolsey, 1998] and [Rajan \& Takriti, 2005] to nonstationary lower bounds

Questions: When is such formulation ideal

- in the 3-bin space, or the 2-bin space of the (\mathbf{y}, \mathbf{z}) variables?
- in the 1-bin space of the state variables \mathbf{y} ?

Subsets of Bound Types and Polytopes

Questions: When is such formulation ideal

- in the 3-bin space, or the 2-bin space of the (\mathbf{y}, \mathbf{z}) variables?
- in the 1 -bin space of the state variables \mathbf{y} ?

We generalize these questions to any subset $\boldsymbol{B} \subseteq\{\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma}, \boldsymbol{\delta}\}$ of bound types in force: let

- $Z(B)=\left\{(\mathbf{y}, \mathbf{z}) \in\{0,1\}^{n+n}\right.$ satisfying the bound constraints in $\left.B\right\}$
- $Y(B)=\operatorname{proj}_{y} Z(B)$

Remark: $Z(\varnothing)=\left\{(\mathbf{y}, \mathbf{z}) \in\{0,1\}^{n+n}:(2)-(4)\right\}$ and $Y(\varnothing)=\{0,1\}^{n}$

$$
Z(B)=\bigcap_{\epsilon \in B} Z(\boldsymbol{\epsilon}) \text { and } Y(B)=\bigcap_{\epsilon \in B} Y(\boldsymbol{\epsilon}) \text { for } \emptyset \neq B \subseteq\{\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma}, \boldsymbol{\delta}\}
$$

Weak Monotonicity and Earliest Interval Starts

The given bounds in B satisfy weak monotonicity if

$$
t+\varepsilon_{t} \leq u+\varepsilon_{u} \text { for } 0 \leq t<u \leq n \text { and } \varepsilon \in B
$$

- By waiting one period one cannot be forced to switch on or off earlier

For every $\varepsilon \in\{\alpha, \boldsymbol{\beta}, \boldsymbol{\gamma}, \boldsymbol{\delta}\}$ and $t \in[1, n]$ let

$$
s_{B}(\varepsilon, t)=\min \left\{u \in[0, n]: u+\varepsilon_{u}>t\right\}
$$

denote the earliest start period of an on- (if $\boldsymbol{\varepsilon}=\boldsymbol{\alpha}$ or $\boldsymbol{\beta}$) or (otherwise) off- interval that may end after t.

- If the lower bound type $\alpha \notin B$ (resp., $\gamma \notin B$) then let all $\alpha_{t}=1$ (resp., all $\gamma_{t}=1$) and $s_{B}(\boldsymbol{\alpha}, t)=t$ (resp., $\left.s_{B}(\gamma, t)=t\right)$
- If the upper bound type $\beta \notin B$ (resp., $\delta \notin B$) then let all $\beta_{t}=n$ (resp., all $\delta_{t}=n$) and $s_{B}(\boldsymbol{\beta}, t)=0\left(\right.$ resp., $\left.s_{B}(\delta, t)=0\right)$
By weak monotonicity, for all $B, \varepsilon \in B$ and $t \in[1, n]$

$$
u \in\left[s_{B}(\varepsilon, t), t\right] \quad \text { iff } \quad\left(u \in[0, n] \text { and } u+\varepsilon_{u}>t\right)
$$

Formulation for $Z(B)$

$$
\begin{array}{cll}
z_{0} & =y_{0} ; & \\
z_{t} \geq y_{t}-y_{t-1} & t \in[1, n] ; \\
\sum_{u=s_{B}(\alpha, t)}^{t} z_{u} \leq y_{t} & t \in[1, n] ; \\
y_{t} \leq \sum_{u=s_{B}(\beta, t)}^{t} z_{u} & t \in[1, n] ; \\
\sum_{u=s_{B}(\gamma, t)}^{t} z_{u} \leq 1-y_{s_{B}(\gamma, t)-1} & t \in[1, n]: s_{B}(\boldsymbol{\gamma}, t) \geq 1 ; \\
1-y_{S_{B}(\delta, t)-1} \leq \sum_{u=s_{B}(\delta, t)}^{t} z_{u} & t \in[1, n]: s_{B}(\boldsymbol{\delta}, t) \geq 1 \\
0 \leq y_{t} \leq 1 & & t \in[1, n] ; \\
0 \leq z_{t} \leq 1 & t \in[1, n]
\end{array}
$$

Ideal Formulation

Theorem: Under weak monotonicity, for every B the polytope $P_{Z}(B)$ defined by (35)-(42) is an ideal formulation of $Z(B)$

- i.e., $P_{Z}(B)=\operatorname{conv} Z(B)$
- How do we prove this?

Integer count variables For all $t \in[1, n]$ let
$v_{t} \in \mathbb{Z}_{+}$denote the number of start-ups in the interval $[0, t]$, i.e., $v_{t}=\sum_{j=0}^{t} z_{j}=$

$$
y_{0}+\sum_{j=1}^{t} z_{j}, \text { and }
$$

$u_{t} \in \mathbb{Z}_{+}$denote the number of switch-offs in the interval $[1, t]$, i.e., $u_{t}=\sum_{j=1}^{t} w_{j}$.
with initial values $v_{0}=y_{0}$ and $u_{0}=0$
Observation: There is a one-to-one unimodular transformation between the (\mathbf{u}, \mathbf{v}) and (\mathbf{y}, \mathbf{z}) variables, given by

$$
\begin{array}{lr}
z_{t}=v_{t}-v_{t-1} & t \in[1, n] ; \\
y_{t}=v_{t}-u_{t} & t \in[1, n]
\end{array}
$$

Extended Formulation

$$
\begin{align*}
u_{-1} & =y_{0}-1 ; & & \tag{46}\\
v_{-1}=u_{0} & =0 ; & & \tag{47}\\
v_{0} & =y_{0} ; & & \tag{48}\\
u_{t}-u_{t-1} & \geq 0 & & t \in[1, n] ; \tag{49}\\
u_{t}-v_{s_{B}(\alpha, t)-1} & \leq 0 & & t \in[1, n] ; \\
v_{s_{B}(\beta, t)-1}-u_{t} & \leq 0 & & \\
v_{t}-u_{s_{B}(\gamma, t)-1} & \leq 1 & & t \in[1, n] ; \\
v_{t}-u_{s_{B}(\delta, t)-1} & \geq 1 & & t \in[1, n]: s_{B}(\boldsymbol{\gamma}, t) \geq 1 ; s_{B}(\boldsymbol{\delta}, t) \geq 1 ; \\
0 \leq v_{t}-u_{t} & \leq 1 & & t \in[1, n] ; \\
0 \leq v_{t}-v_{t-1} & \leq 1 & & t \in[1, n] .
\end{align*}
$$

Proposition: The polytope $Q_{U V}(B)$ defined by (46)-(55) and the linking constraints (43)-(44) is an extended formulation for conv $Z(B)$.

Ideal Extended Formulation

Theorem: The polytopes $Q_{U V}(B)$ and $P_{Z}(B)$ are integral, and

$$
P_{Z}(B)=\operatorname{conv} Z(B)
$$

- Generalizes results in [Malkin, 2003] and [Rajan \& Takriti, 2005] to upper bounds and nonstationary data

Remark: in the (\mathbf{y}, \mathbf{z}) space the different bound types do not interact:

$$
\operatorname{conv}(Z(B))=\bigcap_{\epsilon \in R} \operatorname{conv}(Z(\boldsymbol{\epsilon})) \quad \text { for all } B \subseteq\{\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma}, \boldsymbol{\delta}\}, B \neq \emptyset
$$

In the 1-Bin Space of the State Variables y ?

Definition Let $S=\left\{j_{1}, \ldots, j_{k}\right\}$ with $1 \leq j_{1}<\cdots<j_{k} \leq n$.

- If $k=|S|$ is odd, $O d d(S, y) \equiv y_{j_{1}}-y_{j_{2}}+\cdots-y_{j_{k-1}}+y_{j_{k}}$ and
- if $k=|S|$ is even, $\operatorname{Even}(S, y) \equiv y_{j_{1}}-y_{j_{2}}+\cdots-y_{j_{k}}$.
- Length $(S) \equiv j_{k}-j_{1}$.

Alternating inequality: $\operatorname{Odd}(S, \mathbf{y}) \leq($ or $\geq) ~ \mu$ for some integer μ
The case of lower bounds only:
Theorem: conv $Y(\boldsymbol{\alpha}, \boldsymbol{\gamma})$ is given by the alternating inequalities:
(i) $\operatorname{Odd}(S, \mathbf{y}) \geq 0$
$S \subseteq\left[s_{B}(\boldsymbol{\alpha}, t), t\right]$ odd, and $t \in[0, n]$
(ii) $\operatorname{Odd}(S, \mathbf{y}) \leq 1$
$S \subseteq\left[s_{B}(\gamma, t), t\right]$ odd, and $t \in[0, n]$

How do we prove this?
Let polytope $P=\left\{\mathbf{y} \in[0,1]^{n}:\right.$ (i) and (ii) $\}$:

- (i) and (ii) are valid for $Y(\boldsymbol{\alpha}, \gamma)$, hence $\operatorname{proj}_{y} P_{Z}(\boldsymbol{\alpha}, \gamma) \subseteq P$

Separating the Alternating Inequalities

To prove the converse inclusion, $P \subseteq \operatorname{proj}_{y} P_{Z}(\boldsymbol{\alpha}, \gamma)$, consider $y^{*} \in P$ and let for all t

$$
\begin{aligned}
& F(t)=\max \left\{\operatorname{Odd}\left(S, \mathbf{y}^{*}\right): S \subseteq[0, t],|S| \text { odd }\right\} \\
& G(t)=\max \left\{\operatorname{Even}\left(S, \mathbf{y}^{*}\right): S \subseteq[0, t],|S| \text { even }\right\}
\end{aligned}
$$

- The resulting vectors \mathbf{F} and \mathbf{G} can be computed in linear time by Dynamic Programming
- In particular, the DP recursions imply that $(\mathbf{u}, \mathbf{v})=(\mathbf{G}, \mathbf{F})$ satisfy (46)-(55), i.e., that $(\mathbf{G}, \mathbf{F}) \in \operatorname{proj}_{u, \nu} Q_{U V}(\boldsymbol{\alpha}, \gamma)$
- Therefore $\mathbf{y}^{*} \in \operatorname{proj}_{y} Q_{U V}(\boldsymbol{\alpha}, \gamma)=\operatorname{proj}_{y} P_{Z}(\boldsymbol{\alpha}, \gamma)$

Corollary: There is a linear time separation algorithm for conv $Y(\boldsymbol{\alpha}, \gamma)$: given $\mathbf{y}^{*} \in[0,1]^{n}$ compute \mathbf{F} and \mathbf{G} and check whether (G, F) satisfies (46)-(55)

Upper Bounds Only

The case of upper bounds only is much easier:
Proposition: conv $Y(\boldsymbol{\beta}, \boldsymbol{\delta})$ is given by

$$
\begin{array}{ll}
\sum_{u=t}^{t+\beta_{t}} y_{u} \leq \beta_{t} & t \in[0, n]: t+\beta_{t} \leq n ; \\
\sum_{u=t}^{t+\delta_{t}} y_{u} \geq 1 & t \in[0, n]: t+\delta_{t} \leq n ;
\end{array}
$$

$$
\begin{equation*}
y \in[0,1]^{n} . \tag{59}
\end{equation*}
$$

Corollary: $\quad \operatorname{conv} Y(\boldsymbol{\alpha}, \gamma)=\operatorname{conv} Y(\boldsymbol{\alpha}) \cap \operatorname{conv} Y(\gamma)$ $\operatorname{conv} Y(\boldsymbol{\beta}, \boldsymbol{\delta})=\operatorname{conv} Y(\boldsymbol{\beta}) \cap \operatorname{conv} Y(\boldsymbol{\delta})$

- Combining the two lower bound types, or the two upper bound types, does not give rise to new facets when projecting onto the \mathbf{y}-subspace

Related Polytopes?

On the other hand, the structure of conv $Y(\boldsymbol{\alpha}, \boldsymbol{\beta})$ is not well understood

- even in the case of stationary bounds $\alpha=\bar{\alpha}$ (i.e., $\alpha_{t}=\alpha$ for all t) and $\beta=\bar{\beta}$
- For example: If $\bar{\alpha}<\bar{\beta}<2 \bar{\alpha}$, the inequalities

$$
\sum_{u=t}^{t+\bar{\alpha}-1} y_{u}+\sum_{u=t+\bar{\alpha}+1}^{t+\bar{\beta}} y_{u}+\sum_{u=t+\bar{\beta}+2}^{t+\bar{\alpha}+\bar{\beta}+1} y_{u} \leq \bar{\alpha}+\bar{\beta}-1
$$

are valid, and facet defining when t and $n-t$ are sufficiently large
Remark: Exchanging the roles of the on and off machine states and switch on off actions, all results about $Y(\boldsymbol{\alpha}, \boldsymbol{\beta})$ and its convex hull translate (with an affine change of variables) into equivalent results about $Y(\boldsymbol{\gamma}, \boldsymbol{\delta})$ and its convex hull

Some References (1)

1. Two "classic" papers:
W.E. Smith, 1956: Various optimizers for single-stage production. Naval Research Logistics Quarterly 3 (1\&2) 59-66
W.L. Eastman, S. Even, I.M. Isaacs, 1964: Bounds for the optimal scheduling of n jobs on m processors. Management Sc. 11 (2) 268-279
2. Unpublished "survey":
M. Queyranne and A.S. Schulz, Polyhedral Approaches to Machine Scheduling, Report 408/1994, Fachbereich Mathematik, T.U. Berlin, 1994
3. Other references (with apologies for the many omissions...)
D. Applegate, R. Bixby, W. Cook, and V. Chvátal, 1998: On the solution of traveling salesman problems. Documenta Math. III.
D. Applegate and W. Cook, 1991: A computational study of the job-shop scheduling problem. ORSA J. Computing 3 (2) 149-156.
E. Balas, 1985: On the facial structure of scheduling polyhedra. In Math. Prog. Study 24 (Essays in Honor of George B. Dantzig Part I) 179-218
E.A. Boyd, 1995: On the convergence of Fenchel cutting planes in mixed-integer programming. SIAM J. Optimization 5 (2) 421-435
J. Carlier, 1982: The one-machine sequencing problem. Europ J. O.R.. 11 (1) 42-47
C. Chekuri and R. Motwani, 1999: Precedence constrained scheduling to minimize sum of weighted completion times on a single machine. Discrete Appl. Math. 98 29-38

Some References (2)

M. Chou, M. Queyranne and D. Simchi-Levi, 2006: The asymptotic performance ratio of an on-line algorithm for uniform parallel machine scheduling with release dates. Math. Programming 106 (1) 137-157
M. Chou, H. Liu, M. Queyranne and D. Simchi-Levi, 2006: On the asymptotic optimality of a simple on-line algorithm for the stochastic single machine weighted completion time problem and its extensions. Operations Res. 54 (3), 464-474
M.E. Dyer and L.A. Wolsey, 1990. Formulating the single machine sequencing problem with release dates as a mixed integer program. Discrete Applied Math, 26 (2-3) 255-270
L.L. Garver, 1963: Power generation scheduling by integer programming-development of theory, power apparatus and systems. III Trans. Am. Inst. Electr. Eng. 81 (3) 730-734
M.X. Goemans, 1997: Improved approximation algorithms for scheduling with release dates. Eighth Annual ACM-SIAM Symp. on Discrete Algorithms, New Orleans, 591--598
M.X. Goemans, M. Queyranne, A.S. Schulz, M. Skutella, Y. Wang, 2002: Single machine scheduling with release dates. SIAM J. Discrete Math. 15 (2) 165-192
M.X. Goemans, D.P. Williamson, 2000: Two-dimensional Gantt charts and a scheduling algorithm of Lawler. SIAM J. Discrete Math. 13 (3) 281--294
M. Grötschel, L. Lovász, and A. Schrijver, 1981: The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1 (2) 169-197
Y. Kobayashi, A.R. Mahjoub, and S.T. McCormick, 2012: Separation of Series Constraints for One-Machine Scheduling with Precedence. Talk given at T.U. Berlin, June 2012.
H. Liu, M. Queyranne and D. Simchi-Levi, 2005: On the asymptotic optimality of algorithms for the flow shop problem with release dates. Naval Res. Logistics 52 (3) 232-242

Some References (3)

A.R. Mahjoub and S.T. McCormick, 2010: Separation Algorithms for Single-Machine Scheduling with Precedence Constraints. U. Paris Dauphine.
P. Malkin, 2003: Minimum runtime and stoptime polyhedra. In: Working Paper, Core, Université catholique de Louvain
F. Margot, M. Queyranne, and Y. Wang, 2003: Decompositions, network flows and a precendece constrained single machine scheduling problem. Operations Res. 51 (6) 981-992
M. Mastrolilli, M. Queyranne, A.S. Schulz, O. Svensson \& N.A. Uhan, 2008. Minimizing the sum of weighted completion times in a concurrent open shop. Working paper.
R.H. Möhring, A.S. Schulz, M. Uetz, 1999: Approximation in stochastic scheduling: the power of LP-based priority policies. J. ACM 46 924-942
M. Queyranne, 1993: Structure of a simple scheduling polyhedron. Math. Prog 58 263-285
M. Queyranne and M. Sviridenko, 2002: Approximation algorithms for shop scheduling problems with minsum objective. J. Scheduling 5 (4) 287-305
M. Queyranne and Y. Wang, 1991: Single-machine scheduling polyhedra with precedence constraints. Math. O.R. 16 (1) 1-20. Erratum: Math O.R. 20 (3) 768 (1995)
M. Queyranne and L.A. Wolsey, 2017: Tight MIP formulations for bounded up/down times and interval-dependent start-ups. Math. Prog. 164 (1) 129-155
D. Rajan and S. Takriti, 2005: Minimum up/down polytopes of the unit commitment problem with start-up costs. IBM Res. Rep. RC23628 (W0506-050), T.J. Watson Res. Center, Yorktown Heights, NY

Some References (4)

M.W.P. Savelsbergh, R. N. Uma, J. Wein, 1998: An Experimental Study of LP-Based Approximation Algorithms for Scheduling Problems. INFORMS J. Computing 17 (1) 123-136
A.S. Schulz, 1996a: Polytopes and scheduling, PhD thesis, Technische Universität Berlin
A.S. Schulz, 1996b: Scheduling to minimize total weighted completion time: Performance guarantees of LP-based heuristics and lower bounds. In: W.H.Cunningham, S.T. McCormick, and M.Queyranne, eds. Integer Programming and Combinatorial Optimization. LNCS 1084, Springer, 301-315
J.B. Sidney, 1975: Decomposition algorithms for single-machine sequencing with precedence relations and deferral costs. Operations Res. 23 283-298
L. Stougie and A.P.A. Vestjens, 2002: Randomized algorithms for on-line scheduling problems: how low can't you go? Oper. Res. Letters 30 (2) 89-96
G. Weiss, 1990: Approximation results in parallel machines stochastic scheduling. Annals Oper. Res. 26 195-242
G. Weiss, 1992. Turnpike optimality of Smith's rule in parallel machines stochastic scheduling. Math. Oper. Res. 17 255-270
L. A. Wolsey, 1985: Mixed integer programming formulations for production planning and scheduling problems. Invited talk, 12th Internat'I Symp. on Math. Programming, MIT.
L. A. Wolsey, 1989: Formulating single machine scheduling problems with precedence constraints. CORE Discussion Papers 1989/024, Université catholique de Louvain
L.A. Wolsey, 1998: Integer Programming. Wiley.
C.H. Xia, J.G. Shanthikumar, P.W. Glynn, 2000: On the asymptotic optimality of the SPT rule for the flow shop average completion time problem. Oper. Res. 48 (4) 615-622

