Efficient Algorithms and Provably Good Solutions for NP-hard Scheduling Problems

Martin Skutella
(joint work with Sven Jäger)

May 12, 2021

schedulingseminar.com

Side Note

A simple proof of the Moore-Hodgson Algorithm for minimizing the number of late jobs

Joseph Cheriyan ${ }^{\text {a,1,* }}$, R. Ravi ${ }^{\text {b,2 }}$, Martin Skutella ${ }^{\mathrm{c}, 3}$
${ }^{a}$ C\&O Dept., University of Waterloo, Waterloo, ON, Canada N2L 3G1
${ }^{b}$ Tepper School of Business, Carnegie Mellon University, Pittsburgh, USA
${ }^{c}$ Institute of Mathematics, Technische Universität Berlin, Germany

Abstract

The Moore-Hodgson Algorithm minimizes the number of late jobs on a single machine. That is, it finds an optimal schedule for the classical problem $1\left|\mid \sum U_{j}\right.$. Several proofs of the correctness of this algorithm have been published. We present a new short proof.

Keywords: Scheduling theory, Moore-Hodgson Algorithm, number of late jobs

How to Tackle NP-hard Scheduling Problems

Exact methods: find optimal solution at the cost of an exponential worst-case running time; sometimes work well in practice;
Examples: Dynamic Programming, Integer Programming, Constraint Programming, Branch and Bound, ...

Heuristic methods: work well in practice but usually do not come with a worst-case performance guarantee or running time bound;
Examples: local search, simulated annealing, genetic algorithms, greedy heuristics, machine learning, ...

Approximation algorithms: find in polynomial time a feasible solution with an a priori bound on the quality of the computed solution;
Examples: combinatorial algorithms, LP-based, primal-dual, greedy, local search, iterative rounding, ...

Approximation Algorithms

Definition.

ii An α-approximation algorithm for a minimization problem finds in polynomial time a feasible solution whose value is within a factor of α of the optimum. The factor $\alpha \geq 1$ is called performance ratio.
Iii A family of $(1+\varepsilon)$-approximation algorithms for each $\varepsilon>0$ is a polynomial-time approximation scheme (PTAS).
困 A PTAS whose running time is polynomial in the input size and $1 / \varepsilon$ is a fully polynomial-time approximation scheme (FPTAS).

Examples:

Scheduling identical parallel machines with makespan objective: $\mathrm{P} \| C_{\max }$

- List scheduling is a 2-approximation algorithm (Graham 1966).
- List scheduling in order of non-increasing job sizes is a 4/3-approximation algorithm (Graham 1969).
- FPTAS for fixed number of machines \boldsymbol{m} (Horowitz \& Sahni 1976)
- PTAS (Hochbaum \& Shmoys 1987)

Total Weighted Completion Time Objective

Given: n jobs $j=1, \ldots, n$, processing times $p_{j}>0$, weights $w_{j}>0$
Task: schedule jobs on a single machine; minimize $\sum_{j} w_{j} C_{j}$

Weighted Shortest Processing Time (WSPT) rule:

Theorem (Smith 1956).
Sequencing jobs in order of non-increasing ratios w_{j} / p_{j} is optimal.

Proof of WSPT Rule via Two-Dimensional Gantt Charts

 Eastman, Even \& Isaacs 1964; Goemans \& Williamson 2000
$w_{j} / p_{j}=$ diagonal slope of rectangle representing job j

Swap Weights and Processing Times

Parallel Machine Scheduling to Minimize $\sum w_{j} C_{j}$

Given: n jobs $j=1, \ldots, n$, processing times $p_{j}>0$, weights $w_{j}>0$ Task: schedule jobs on m parallel machines; minimize $\sum_{j} w_{j} C_{j}$

weakly NP-hard for two machines (Bruno, Coffman \& Sethi 1974)

- strongly NP-hard if m part of input (Garey \& Johnson, problem SS13)
- FPTAS for fixed number of machines m (Sahni 1976)
- PTAS (Sk. \& Woeginger 2000)

List Scheduling in Order of Non-Increasing w_{j} / p_{j}

 $w_{1} / p_{1} \geq w_{2} / p_{2} \geq \ldots \geq w_{n} / p_{n}$

Theorem (Conway, Maxwell \& Miller 1967).
Optimal if $w_{j}=1$ for all j (or: $p_{j}=1$ for all j).

Theorem (Kawaguchi \& Kyan 1986).

Tight performance ratio: $\frac{1+\sqrt{2}}{2} \approx 1.207$

Fast Single Machine Lower Bound

$$
\begin{aligned}
& \text { Lemma (Eastman, Even \& Isaacs 1964). } \\
& \frac{1}{m}\left(\mathrm{OPT}_{1}-\frac{1}{2} \sum_{j} w_{j} p_{j}\right) \leq \mathrm{OPT}_{m}-\frac{1}{2} \sum_{j} w_{j} p_{j}
\end{aligned}
$$

The Performance Ratio of WSPT is at most $3 / 2$

Lemma (Eastman, Even \& Isaacs 1964).

$$
\frac{1}{m}\left(\mathrm{OPT}_{1}-\frac{1}{2} \sum_{j} w_{j} p_{j}\right) \leq \mathrm{OPT}_{m}-\frac{1}{2} \sum_{j} w_{j} p_{j}
$$

WSPT start times \leq single machine start times

Thus:

$$
\begin{aligned}
\mathrm{WSPT}_{m} & \leq \frac{1}{m}\left(\mathrm{OPT}_{1}-\frac{1}{2} \sum_{j} w_{j} p_{j}\right)+\sum_{j} w_{j} p_{j} \\
& \leq \mathrm{OPT}_{m}+\frac{1}{2} \sum_{j} w_{j} p_{j} \leq \frac{3}{2} \mathrm{OPT}_{m}
\end{aligned}
$$

Simplified and Refined Proof of the Kawaguchi-Kyan Bound

Theorem (Kawaguchi \& Kyan 1986).
WSPT has performance ratio exactly $\frac{1+\sqrt{2}}{2} \approx 1.207$
Proof idea: explicit construction of worst-case instance (for $m \rightarrow \infty$)
Schwiegelshohn 2011: considerably simplified proof (but same idea)
Jäger \& Sk. 2018/21: construction of worst-case instance for each fixed m
Sequence of reductions to worst-case instances with:
Iiil $w_{j}=p_{j}$ for all j
IIII at most $m-1$ large jobs and many tiny jobs
囲 all large jobs are extra-large
(vill all extra-large jobs have same size

First Reduction: $w_{j}=p_{j} \forall j$

$\frac{w_{j}}{P_{j}} \geq R \quad$ for $j=1, \ldots, k \quad \frac{w_{j}}{p_{j}} \leq r \quad$ for $j=k+1, \ldots, n$

$\sum_{j=1}^{n} w_{j} C_{j}=\frac{r}{R} \sum_{j=1}^{k} w_{j} C_{j}+\sum_{j=k+1}^{n} w_{j} C_{j}+\left(1-\frac{r}{R}\right) \sum_{j=1}^{k} w_{j} C_{j}$
$\Longrightarrow \quad \frac{\text { WSPT }}{\text { OPT }}=\frac{A_{\text {WSPT }}+B_{\text {WSPT }}}{A_{\text {OPT }}+B_{\text {OPT }}} \leq \max \left\{\frac{A_{\text {WSPT }}}{A_{\text {OPT }}}, \frac{B_{\text {WSPT }}}{B_{\text {OPT }}}\right\}$

Objective Function in Terms of Machine Loads $\left(\right.$ for $\left.w_{j}=p_{j}\right)$

one machine i :

$$
\sum_{j \rightarrow i} p_{j} C_{j}=\frac{1}{2}(\underbrace{\sum_{j \rightarrow i} p_{j}}_{L_{i}})^{2}+\frac{1}{2} \sum_{j \rightarrow i} p_{j}^{2}
$$

m-machine schedule:

$$
\sum_{j=1}^{n} p_{j} C_{j}=\frac{1}{2} \sum_{i=1}^{m} L_{i}^{2}+\frac{1}{2} \sum_{j=1}^{n} p_{j}^{2}
$$

notice:
$>\sum_{i} L_{i}=\sum_{j} p_{j}$ (fixed)
$\Rightarrow \sum_{i} L_{i}{ }^{2}$ minimal if $L_{1}=\cdots=L_{m}$

Second Reduction: Large Jobs and 'Sand'TM (6. . Wooginger)

$$
\sum_{j} p_{j} C_{j}=\frac{1}{2} \sum_{i} L_{i}^{2}+\frac{1}{2} \sum_{j} p_{j}^{2}
$$

WSPT:

$>\sum_{i} L_{i}^{2}$ remains unchanged
$\Rightarrow \sum_{j} p_{j}^{2}$ decreased by $\delta \geq 0$
OPT:
$\Rightarrow \sum_{i} L_{i}{ }^{2}$ unchanged or decreases
$>\sum_{j} p_{j}^{2}$ decreased by same $\delta \geq 0$
$\Longrightarrow \frac{\text { WSPT }}{\text { OPT }}$ unchanged or increased

Third Reduction: Make Large Jobs Extra-Large

Increase in objective:

$$
\begin{aligned}
& \frac{1}{2} \sum_{i}\left(\left(1+y_{i}\right)^{2}+y_{i}^{2}-\left(1+x_{i}\right)^{2}-x_{i}^{2}\right) \quad \frac{1}{2} \sum_{i}\left(y_{i}^{2}-x_{i}^{2}\right) \geq 0 \\
& =\sum_{i}\left(y_{i}^{2}-x_{i}^{2}\right) \quad \text { as } \sum_{i} x_{i}=\sum_{i} y_{i}
\end{aligned}
$$

Fourth Reduction: All Extra-Large Jobs have Same Size
 OPT schedule

Increase in objective:

$$
\begin{aligned}
& \frac{1}{2} \sum_{i}\left(\left(1+z_{i}\right)^{2}+z_{i}^{2}-\left(1+y_{i}\right)^{2}-y_{i}^{2}\right) \quad \sum_{i}\left(z_{i}^{2}-y_{i}^{2}\right) \leq 0 \\
& =\sum_{i}\left(z_{i}^{2}-y_{i}^{2}\right) \quad \text { as } \sum_{i} z_{i}=\sum_{i} y_{i}
\end{aligned}
$$

Analyzing the Performance Ratio

WSPT schedule

OPT schedule

$$
\begin{gathered}
\text { WSPT }=\frac{m}{2}+k \cdot x(1+x) \quad \text { OPT }=k \cdot x^{2}+\frac{m^{2}}{2(m-k)} \\
\frac{\text { WSPT }}{\text { OPT }}=\frac{(m-k)\left(2 k x^{2}+2 k x+m\right)}{(m-k) 2 k x^{2}+m^{2}}
\end{gathered}
$$

Observation: for fixed k, m, maximum ratio at $x=\frac{m}{\sqrt{k(2 m-k)}-k}$

Worst-Case Instances

worst-case performance ratio for fixed $m: \max _{k}\left(1-\frac{k}{2 m}+\sqrt{\frac{k}{2 m}\left(1-\frac{k}{2 m}\right)}\right)$

10

Observation: for each fixed m, maximum at $k=\left\lfloor\left(1-\frac{1}{2} \sqrt{2}\right) m\right\rceil$.

Stochastic Scheduling on Identical Parallel Machines

Given: distributions of independent random processing times $\boldsymbol{p}_{j} \geq 0$

Task: find m-machine scheduling policy minimizing $\mathrm{E}\left[\sum w_{j} C_{j}\right]$

- scheduling policy must be non-anticipative, i.e., decision made at time t may only depend on the information known at time t

Weighted Shortest Expected Processing Time (WSEPT)

WSEPT Rule

List scheduling in order of non-increasing $w_{j} / \mathrm{E}\left[\boldsymbol{p}_{j}\right]$.

- WSEPT is optimal for single machine (Rothkopf 1966)
\downarrow WSEPT has performance ratio $1+\frac{1}{2}(1+\Delta)$ with $\Delta \geq \frac{\operatorname{Var}\left[p_{j}\right]}{E\left[p_{j}\right]^{2}}$ for all j. (Möhring, Schulz \& Uetz 1999)
- WSEPT has no constant performance ratio. (Cheung, Fischer, Matuschke \& Megow 2014; Im, Moseley \& Pruhs 2015)
- WSEPT has performance ratio $1+\frac{1}{2}(\sqrt{2}-1)(1+\Delta)$. (Jäger \& Sk. 2018)

Open Problem

Online setting:

- jobs arrive one by one; must be immediately assigned to machines
- on each machine, assigned jobs are optimally sequenced (WSPT)

Algorithm MinIncrease

- assign job to machine minimizing increase of current objective value

Known results:
\Rightarrow MinIncrease has competitive ratio $\frac{3}{2}-\frac{1}{2 m}$.
$>$ If jobs arrive in order of non-increasing or non-decreasing w_{j} / p_{j}, then Minlncrease achieves competitive ratio $\frac{1}{2}(1+\sqrt{2})$.

Conjecture (Stougie 2017).
MinIncrease has competitive ratio $\frac{1}{2}(1+\sqrt{2})$.

Some References

- J. Bruno, E. G. Coffman, Jr., and R. Sethi: Scheduling independent tasks to reduce mean finishing time, Commun. ACM 17(7):382-387, 1974
- W. L. Eastman, S. Even, and I. M. Isaacs: Bounds for the Optimal Scheduling of n Jobs on m Processors, Management Science 11(2):268-279, 1964
- M.X. Goemans and D. P. Williamson: Two-Dimensional Gantt Charts and a Scheduling Algorithm of Lawler, SIAM J. Discrete Math. 13(3):281-294, 2000
- S. Jäger: Approximation in Deterministic and Stochastic Machine Scheduling, PhD thesis, TU Berlin, 2021
- S. Jäger, M. Skutella: Generalizing the Kawaguchi-Kyan Bound to Stochastic Parallel Machine Scheduling, STACS 2018: 43:1-43:14
- T. Kawaguchi and S. Kyan: Worst Case Bound of an LRF Schedule for the Mean Weighted Flow-time Problem, SIAM J. Comput. 15(4):1119-1129, 1986
$>$ N. Megow, M. Uetz, and T. Vredeveld: Models and Algorithms for Stochastic Online Scheduling, Math. Oper. Res. 31(3):513-525, 2006
- R. H. Möhring, A. S. Schulz, and M. Uetz: Approximation in Stochastic Scheduling: The Power of LP-Based Priority Policies, J. ACM 46(6):924-942, 1999
- M. H. Rothkopf: Scheduling with random service times, Man. Sci. 12(9): 707-713, 1966
$>$ S. K. Sahni: Algorithms for Scheduling Independent Tasks, J. ACM 23(1):116-127, 1976
$>$ U. Schwiegelshohn: An Alternative Proof of the Kawaguchi-Kyan Bound for the Largest-Ratio-First Rule, Oper. Res. Lett. 39:255-259, 2011
$>$ M. Skutella and G. J. Woeginger: A PTAS for Minimizing the Total Weighted Completion Time on Identical Parallel Machines, Math. Oper. Res. 25(1):63-75, 2000
- W. E. Smith: Various Optimizers for Single-stage Production, Naval Res. Logist. Quart. 3(1-2):59-66, 1956

