
Efficient Algorithms and Provably Good Solutions for
NP-hard Scheduling Problems

Martin Skutella
(joint work with Sven Jäger)

May 12, 2021

schedulingseminar.com

Side Note

ar
X

iv
:2

10
4.

06
21

0v
1

 [c
s.D

S]
 1

3
A

pr
 2

02
1

A simple proof of the Moore-Hodgson Algorithm for minimizing the
number of late jobs

Joseph Cheriyana,1,∗, R. Ravib,2, Martin Skutellac,3

a C&O Dept., University of Waterloo, Waterloo, ON, Canada N2L 3G1
b Tepper School of Business, Carnegie Mellon University, Pittsburgh, USA

c Institute of Mathematics, Technische Universität Berlin, Germany

Abstract

The Moore-Hodgson Algorithm minimizes the number of late jobs on a single machine. That is, it
finds an optimal schedule for the classical problem 1 | | ∑

Uj . Several proofs of the correctness of this
algorithm have been published. We present a new short proof.

Keywords: Scheduling theory, Moore-Hodgson Algorithm, number of late jobs

1. Introduction

In 1968, J. M. Moore [5] presented an algorithm and analysis for minimizing the number of late
jobs on a single machine. Moore stated “The algorithm developed in this paper, however, consists of
only two sorting operations performed on the total set of jobs, . . . Consequently, this method will
be computationally feasible for very large problems and can be performed manually on many smaller
problems.” At the end of the paper, Moore presented a version of his algorithm that he attributed to
T. E. Hodgson; we follow that version. In hindsight, the algorithm is “just right” for the problem, and
it is a popular topic in courses on Scheduling. Several proofs of correctness have been published in the
literature, see, e.g., [5, 2, 1, 6]. But, in our opinion, none of these proofs matches the simplicity of the
algorithm. We present a proof that, hopefully, remedies this discrepancy.

Our notation usually follows the notation of Pinedo [6]. For a positive integer !, we use [!] to denote
the set {1, 2, . . . , !}.

An instance I of the scheduling problem 1 | | ∑
Uj consists of one machine and n jobs; the jobs are

denoted 1, . . . , n (we identify a job with its index). Each job j has a non-negative processing time pj

and a non-negative due date dj .
A schedule for this problem is a permutation of the n jobs. For a given schedule S, the completion

time of job j, denoted Cj , is the sum of the processing times of job j and the processing times of the
jobs that precede j in S. A job j is called late (in the schedule S) if Cj > dj . The goal is to find a
schedule such that the number of late jobs is minimum. We use opt(I) or opt to denote the minimum
number of late jobs of the instance I (over all possible schedules).

A key feature of our proof is that we do not use induction on a particular instance (which is the plan
of Moore’s proof), and instead, we use induction on opt over all instances.

2. The algorithm and analyis

The EDD rule (earliest due date rule) orders the jobs in non-decreasing order of their due dates;
this results in an EDD sequence. From here on, we assume that the jobs are indexed according to the
EDD rule; that is, d1 ≤ d2 ≤ · · · ≤ dn.

∗Corresponding author
Email addresses: jcheriyan@uwaterloo.ca (Joseph Cheriyan), ravi@cmu.edu (R. Ravi),

martin.skutella@tu-berlin.de (Martin Skutella)
1This author acknowledges support from the Natural Sciences & Engineering Research Council of Canada (NSERC),

No. RGPIN-2019-04197.
2This material is based upon work supported in part by the U. S. Office of Naval Research under award number

N00014-21-1-2243 and the Air Force Office of Scientific Research under award number FA9550-20-1-0080.
3Supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence

Strategy – The Berlin Mathematics Research Center MATH+ (EXC-2046/1, project ID: 390685689).

Preprint submitted to Elsevier April 14, 2021

arxiv.org/abs/2104.06210

Martin Skutella schedulingseminar.com May 12, 2021

How to Tackle NP-hard Scheduling Problems

Exact methods: find optimal solution at the cost of an exponential
worst-case running time; sometimes work well in practice;

Examples: Dynamic Programming, Integer Programming, Constraint
Programming, Branch and Bound, . . .

Heuristic methods: work well in practice but usually do not come with a
worst-case performance guarantee or running time bound;

Examples: local search, simulated annealing, genetic algorithms, greedy
heuristics, machine learning, . . .

Approximation algorithms: find in polynomial time a feasible solution with
an a priori bound on the quality of the computed solution;

Examples: combinatorial algorithms, LP-based, primal-dual, greedy, local
search, iterative rounding, . . .

Martin Skutella schedulingseminar.com May 12, 2021

Approximation Algorithms
Definition.

i An α-approximation algorithm for a minimization problem finds in
polynomial time a feasible solution whose value is within a factor of α
of the optimum. The factor α ≥ 1 is called performance ratio.

ii A family of (1 + ε)-approximation algorithms for each ε > 0 is a
polynomial-time approximation scheme (PTAS).

iii A PTAS whose running time is polynomial in the input size and 1/ε is
a fully polynomial-time approximation scheme (FPTAS).

Examples:
Scheduling identical parallel machines with makespan objective: P | |Cmax

I List scheduling is a 2-approximation algorithm (Graham 1966).

I List scheduling in order of non-increasing job sizes is a
4/3-approximation algorithm (Graham 1969).

I FPTAS for fixed number of machines m (Horowitz & Sahni 1976)

I PTAS (Hochbaum & Shmoys 1987)
Martin Skutella schedulingseminar.com May 12, 2021

Total Weighted Completion Time Objective

Given: n jobs j = 1, . . . , n, processing times pj > 0, weights wj > 0

Task: schedule jobs on a single machine; minimize
∑

j wjCj

31 2 3 1 2

time0 C3 C1 C2

Weighted Shortest Processing Time (WSPT) rule:

Theorem (Smith 1956).

Sequencing jobs in order of non-increasing ratios wj/pj is optimal.

“Photographer’s Rule”

Martin Skutella schedulingseminar.com May 12, 2021

Proof of WSPT Rule via Two-Dimensional Gantt Charts
Eastman, Even & Isaacs 1964; Goemans & Williamson 2000

1 2 3

time0 C1 C2 C3

w3

w3C3

w2

w2C2

w1

w1C1

p1 p2 p3

weight

time

3 1 2

wj/pj = diagonal slope of rectangle representing job j

Martin Skutella schedulingseminar.com May 12, 2021

Swap Weights and Processing Times

1 2 3

weight

time weight

time

Martin Skutella schedulingseminar.com May 12, 2021

Parallel Machine Scheduling to Minimize
∑

wjCj

Given: n jobs j = 1, . . . , n, processing times pj > 0, weights wj > 0

Task: schedule jobs on m parallel machines; minimize
∑

j wjCj

3 2

47

5

1

8 6
3

2 4

7

51

6

8

time
I weakly NP-hard for two machines (Bruno, Coffman & Sethi 1974)

I strongly NP-hard if m part of input (Garey & Johnson, problem SS13)

I FPTAS for fixed number of machines m (Sahni 1976)

I PTAS (Sk. & Woeginger 2000)
Martin Skutella schedulingseminar.com May 12, 2021

List Scheduling in Order of Non-Increasing wj/pj

w1/p1 ≥ w2/p2 ≥ . . . ≥ wn/pn

1

23

4

5

6

7

8

1

2

3

1

2

3

4

5

6

7

8

Theorem (Conway, Maxwell & Miller 1967).

Optimal if wj = 1 for all j (or: pj = 1 for all j).

Theorem (Kawaguchi & Kyan 1986).

Tight performance ratio: 1+
√
2

2 ≈ 1.207

time

Martin Skutella schedulingseminar.com May 12, 2021

Fast Single Machine Lower Bound
Lemma (Eastman, Even & Isaacs 1964).
1
m

(
OPT1−1

2
∑

j wjpj
)
≤ OPTm−1

2
∑

j wjpj

weight

+

time

weight

1
m time

Martin Skutella schedulingseminar.com May 12, 2021

The Performance Ratio of WSPT is at most 3/2

Lemma (Eastman, Even & Isaacs 1964).
1
m

(
OPT1−1

2
∑

j wjpj
)
≤ OPTm−1

2
∑

j wjpj

WSPT

3

2 4

7

51

6

8

OPT1 /m

WSPT start times ≤ single machine start times

Thus:

WSPTm ≤ 1
m

(
OPT1− 1

2
∑

j wjpj
)

+
∑

j wjpj

≤ OPTm + 1
2
∑

j wjpj ≤ 3
2 OPTm

Martin Skutella schedulingseminar.com May 12, 2021

Simplified and Refined Proof of the Kawaguchi-Kyan Bound

Theorem (Kawaguchi & Kyan 1986).

WSPT has performance ratio exactly 1+
√
2

2 ≈ 1.207

Proof idea: explicit construction of worst-case instance (for m→∞)

Schwiegelshohn 2011: considerably simplified proof (but same idea)

Jäger & Sk. 2018/21: construction of worst-case instance for each fixed m

Sequence of reductions to worst-case instances with:

i wj = pj for all j

ii at most m − 1 large jobs and many tiny jobs

iii all large jobs are extra-large

iv all extra-large jobs have same size

Martin Skutella schedulingseminar.com May 12, 2021

First Reduction: wj = pj ∀ j

3

2 4

51

6

7

8

9

10

11

wj

pj
≥ R for j = 1, . . . , k wj

pj
≤ r for j = k + 1, . . . , n

R > r

n∑

j=1

wjCj =
r

R

k∑

j=1

wjCj +
n∑

j=k+1

wjCj

︸ ︷︷ ︸
=: A

+
(
1− r

R

) k∑

j=1

wjCj

︸ ︷︷ ︸
=: B

=⇒ WSPT

OPT
=

AWSPT + BWSPT

AOPT + BOPT
≤ max

{
AWSPT

AOPT
,
BWSPT

BOPT

}

Martin Skutella schedulingseminar.com May 12, 2021

Objective Function in Terms of Machine Loads (for wj = pj)

p3

p2

p1

Li
p1 p2 p3

weight

time

timeL3 L2 L1

1

2

3

one machine i :

∑

j→i

pjCj = 1
2

(∑

j→i

pj

︸ ︷︷ ︸
Li

)2

+ 1
2

∑

j→i

pj
2

m-machine schedule:
n∑

j=1

pjCj = 1
2

m∑

i=1

Li
2 + 1

2

n∑

j=1

pj
2

notice:
I
∑

i Li =
∑

j pj (fixed)

I
∑

i Li
2 minimal if L1 = · · · = Lm

Martin Skutella schedulingseminar.com May 12, 2021

Second Reduction: Large Jobs and ‘Sand’TM (G. J.Woeginger)

∑

j

pjCj = 1
2

∑

i

Li
2 + 1

2

∑

j

pj
2

WSPT schedule

timeLmin

WSPT:
I
∑

i Li
2 remains unchanged

I
∑

j pj
2 decreased by δ ≥ 0

OPT:
I
∑

i Li
2 unchanged or decreases

I
∑

j pj
2 decreased by same δ ≥ 0

=⇒ WSPT

OPT
unchanged or increased

Martin Skutella schedulingseminar.com May 12, 2021

Third Reduction: Make Large Jobs Extra-Large

old:

WSPT schedule

xixi

Lmin = 1

OPT schedule

xixi

Lmin

new: yi yi

Increase in objective:
1
2
∑

i

(
(1 + yi)

2 + yi
2 − (1 + xi)

2 − xi
2) 1

2
∑

i

(
yi
2 − xi

2) ≥ 0

=
∑

i

(
yi
2 − xi

2) as
∑

i xi =
∑

i yi
Martin Skutella schedulingseminar.com May 12, 2021

Fourth Reduction: All Extra-Large Jobs have Same Size

old:

WSPT schedule

yi

1

OPT schedule

yi

new:

zi zi

Increase in objective:
1
2
∑

i

(
(1 + zi)

2 + zi
2 − (1 + yi)

2 − yi
2) ∑

i

(
zi
2 − yi

2) ≤ 0

=
∑

i

(
zi
2 − yi

2) as
∑

i zi =
∑

i yi
Martin Skutella schedulingseminar.com May 12, 2021

Analyzing the Performance Ratio
WSPT schedule

x

1

OPT schedule

x

m
m−k

1
...

k
...

m

WSPT =
m

2
+ k · x(1 + x) OPT = k · x2 +

m2

2(m − k)

WSPT

OPT
=

(m − k)(2kx2 + 2kx + m)

(m − k)2kx2 + m2

Observation: for fixed k ,m, maximum ratio at x =
m√

k(2m − k)− k
Martin Skutella schedulingseminar.com May 12, 2021

Worst-Case Instances
worst-case performance ratio for fixed m: max

k

(
1− k

2m +
√

k
2m (1− k

2m)
)

Observation: for each fixed m, maximum at k =
⌊(
1− 1

2

√
2
)
m
⌉
.

0 5 10 15 20 25

1.185

1.190

1.195

1.200

1.205

Martin Skutella schedulingseminar.com May 12, 2021

Stochastic Scheduling on Identical Parallel Machines

Given: distributions of independent random processing times pj ≥ 0

t

Pr[pj ≥ t]
1 1 1 1

Task: find m-machine scheduling policy minimizing E
[∑

wjCj

]

I scheduling policy must be non-anticipative, i.e., decision made at
time t may only depend on the information known at time t

t t time0

Martin Skutella schedulingseminar.com May 12, 2021

Weighted Shortest Expected Processing Time (WSEPT)

WSEPT Rule
List scheduling in order of non-increasing wj/E[pj].

I WSEPT is optimal for single machine (Rothkopf 1966)

I WSEPT has performance ratio 1 + 1
2(1 + ∆) with ∆ ≥ Var[pj]

E[pj]2
for all j .

(Möhring, Schulz & Uetz 1999)

I WSEPT has no constant performance ratio. (Cheung, Fischer,
Matuschke & Megow 2014; Im, Moseley & Pruhs 2015)

I WSEPT has performance ratio 1 + 1
2(
√
2− 1)(1 + ∆).

(Jäger & Sk. 2018)

Martin Skutella schedulingseminar.com May 12, 2021

Open Problem
Online setting:
I jobs arrive one by one; must be immediately assigned to machines
I on each machine, assigned jobs are optimally sequenced (WSPT)

Algorithm MinIncrease
I assign job to machine minimizing increase of current objective value

Known results:
I MinIncrease has competitive ratio 3

2 − 1
2m .

I If jobs arrive in order of non-increasing or non-decreasing wj/pj , then
MinIncrease achieves competitive ratio 1

2(1 +
√
2).

Conjecture (Stougie 2017).

MinIncrease has competitive ratio 1
2(1+

√
2).

Martin Skutella schedulingseminar.com May 12, 2021

Some References
I J. Bruno, E. G. Coffman, Jr., and R. Sethi: Scheduling independent tasks to reduce mean

finishing time, Commun. ACM 17(7):382-387, 1974
I W.L. Eastman, S. Even, and I.M. Isaacs: Bounds for the Optimal Scheduling of n Jobs on

m Processors, Management Science 11(2):268-279, 1964
I M.X.Goemans and D. P.Williamson: Two-Dimensional Gantt Charts and a Scheduling

Algorithm of Lawler, SIAM J. Discrete Math. 13(3):281-294, 2000
I S. Jäger: Approximation in Deterministic and Stochastic Machine Scheduling, PhD thesis,

TU Berlin, 2021
I S. Jäger, M. Skutella: Generalizing the Kawaguchi-Kyan Bound to Stochastic Parallel

Machine Scheduling, STACS 2018: 43:1-43:14
I T.Kawaguchi and S. Kyan: Worst Case Bound of an LRF Schedule for the Mean

Weighted Flow-time Problem, SIAM J. Comput. 15(4):1119-1129, 1986
I N.Megow, M.Uetz, and T. Vredeveld: Models and Algorithms for Stochastic Online

Scheduling, Math. Oper. Res. 31(3):513-525, 2006
I R.H.Möhring, A. S. Schulz, and M.Uetz: Approximation in Stochastic Scheduling: The

Power of LP-Based Priority Policies, J. ACM 46(6):924-942, 1999
I M. H. Rothkopf: Scheduling with random service times, Man. Sci. 12(9): 707-713, 1966
I S.K. Sahni: Algorithms for Scheduling Independent Tasks, J. ACM 23(1):116-127, 1976
I U. Schwiegelshohn: An Alternative Proof of the Kawaguchi-Kyan Bound for the

Largest-Ratio-First Rule, Oper. Res. Lett. 39:255-259, 2011
I M.Skutella and G. J.Woeginger: A PTAS for Minimizing the Total Weighted Completion

Time on Identical Parallel Machines, Math. Oper. Res. 25(1):63-75, 2000
I W.E. Smith: Various Optimizers for Single-stage Production, Naval Res. Logist. Quart.

3(1-2):59-66, 1956
Martin Skutella schedulingseminar.com May 12, 2021

