Efficient Algorithms and Provably Good Solutions for NP-hard Scheduling Problems

Martin Skutella (joint work with Sven Jäger)

May 12, 2021

Side Note

A simple proof of the Moore-Hodgson Algorithm for minimizing the number of late jobs

Joseph Cheriyan^{a,1,*}, R. Ravi^{b,2}, Martin Skutella^{c,3}

^a C&O Dept., University of Waterloo, Waterloo, ON, Canada N2L 3G1

^b Tepper School of Business, Carnegie Mellon University, Pittsburgh, USA

^c Institute of Mathematics, Technische Universität Berlin, Germany

Abstract

The Moore-Hodgson Algorithm minimizes the number of late jobs on a single machine. That is, it finds an optimal schedule for the classical problem $1 \mid \mid \sum U_j$. Several proofs of the correctness of this algorithm have been published. We present a new short proof.

Keywords: Scheduling theory, Moore-Hodgson Algorithm, number of late jobs

arxiv.org/abs/2104.06210

Martin Skutella

schedulingseminar.com

How to Tackle NP-hard Scheduling Problems

Exact methods: find optimal solution at the cost of an exponential worst-case running time; sometimes work well in practice;
 Examples: Dynamic Programming, Integer Programming, Constraint Programming, Branch and Bound, ...

Heuristic methods: work well in practice but usually do not come with a worst-case performance guarantee or running time bound;
 Examples: local search, simulated annealing, genetic algorithms, greedy heuristics, machine learning, ...

 Approximation algorithms: find in polynomial time a feasible solution with an a priori bound on the quality of the computed solution;
 Examples: combinatorial algorithms, LP-based, primal-dual, greedy, local search, iterative rounding, ...

Martin Skutella

Approximation Algorithms Definition.

- An α -approximation algorithm for a minimization problem finds in polynomial time a feasible solution whose value is within a factor of α of the optimum. The factor $\alpha \ge 1$ is called performance ratio.
- A family of $(1 + \varepsilon)$ -approximation algorithms for each $\varepsilon > 0$ is a polynomial-time approximation scheme (PTAS).
- **M** A PTAS whose running time is polynomial in the input size and $1/\varepsilon$ is a fully polynomial-time approximation scheme (FPTAS).

Examples:

Scheduling identical parallel machines with makespan objective: $P \mid | C_{max}$

- List scheduling is a 2-approximation algorithm (Graham 1966).
- List scheduling in order of non-increasing job sizes is a ⁴/3-approximation algorithm (Graham 1969).
- FPTAS for fixed number of machines *m* (Horowitz & Sahni 1976)
- PTAS (Hochbaum & Shmoys 1987)

Total Weighted Completion Time Objective

Given: *n* jobs j = 1, ..., n, processing times $p_j > 0$, weights $w_j > 0$ Task: schedule jobs on a single machine; minimize $\sum_j w_j C_j$

Weighted Shortest Processing Time (WSPT) rule:

Theorem (Smith 1956).

Sequencing jobs in order of non-increasing ratios w_j/p_j is optimal.

Martin Skutella

Proof of WSPT Rule via Two-Dimensional Gantt Charts

Eastman, Even & Isaacs 1964; Goemans & Williamson 2000

 w_j/p_j = diagonal slope of rectangle representing job j

Martin Skutella

Swap Weights and Processing Times

Parallel Machine Scheduling to Minimize $\sum w_j C_j$

Given: *n* jobs j = 1, ..., n, processing times $p_j > 0$, weights $w_j > 0$ Task: schedule jobs on *m* parallel machines; minimize $\sum_j w_j C_j$

weakly NP-hard for two machines (Bruno, Coffman & Sethi 1974)

- strongly NP-hard if m part of input (Garey & Johnson, problem SS13)
- FPTAS for fixed number of machines m (Sahni 1976)
- PTAS (Sk. & Woeginger 2000)

Martin Skutella

List Scheduling in Order of Non-Increasing w_j/p_j

 $w_1/p_1 \ \geq \ w_2/p_2 \ \geq \ \ldots \ \geq \ w_n/p_n$

Theorem (Conway, Maxwell & Miller 1967).

Optimal if $w_j = 1$ for all j (or: $p_j = 1$ for all j).

Theorem (Kawaguchi & Kyan 1986).

Tight performance ratio: $\frac{1+\sqrt{2}}{2} \approx 1.207$

Fast Single Machine Lower Bound Lemma (Eastman, Even & Isaacs 1964). $\frac{1}{m} \left(\mathsf{OPT}_1 - \frac{1}{2} \sum_j w_j p_j \right) \leq \mathsf{OPT}_m - \frac{1}{2} \sum_j w_j p_j$ weight weight $\frac{1}{m}$ time time

The Performance Ratio of WSPT is at most 3/2Lemma (Eastman, Even & Isaacs 1964). $\frac{1}{m}(OPT_1 - \frac{1}{2}\sum_i w_j p_j) \leq OPT_m - \frac{1}{2}\sum_i w_j p_j$

WSPT start times \leq single machine start times

Thus:

$$WSPT_m \leq \frac{1}{m} \left(OPT_1 - \frac{1}{2} \sum_j w_j p_j \right) + \sum_j w_j p_j$$
$$\leq OPT_m + \frac{1}{2} \sum_j w_j p_j \leq \frac{3}{2} OPT_m$$

Martin Skutella

Simplified and Refined Proof of the Kawaguchi-Kyan Bound

Theorem (Kawaguchi & Kyan 1986). WSPT has performance ratio exactly $\frac{1+\sqrt{2}}{2} \approx 1.207$

Proof idea: explicit construction of worst-case instance (for $m \to \infty$) Schwiegelshohn 2011: considerably simplified proof (but same idea)

Jäger & Sk. 2018/21: construction of worst-case instance for each fixed m

Sequence of reductions to worst-case instances with:

$$w_j = p_j$$
 for all j

iii at most m-1 large jobs and many tiny jobs

🛅 all large jobs are extra-large

🔽 all extra-large jobs have same size

First Reduction: $w_j = p_j \ \forall j$

$$\frac{w_j}{p_j} \ge R \quad \text{for } j = 1, \dots, k \quad \frac{w_j}{p_j} \le r \quad \text{for } j = k+1, \dots, n$$

$$\frac{1}{2} \quad \frac{5}{4} \quad \frac{8}{6} \quad \frac{11}{9}$$

$$R > r \quad \frac{2}{3} \quad \frac{4}{7} \quad \frac{6}{9} \quad \frac{9}{10}$$

$$\sum_{j=1}^n w_j C_j = \frac{r}{R} \sum_{j=1}^k w_j C_j + \sum_{j=k+1}^n w_j C_j + \left(1 - \frac{r}{R}\right) \sum_{j=1}^k w_j C_j$$

$$\implies \qquad \frac{\mathsf{WSPT}}{\mathsf{OPT}} = \frac{A_{\mathsf{WSPT}} + B_{\mathsf{WSPT}}}{A_{\mathsf{OPT}} + B_{\mathsf{OPT}}} \leq \max\left\{\frac{A_{\mathsf{WSPT}}}{A_{\mathsf{OPT}}}, \frac{B_{\mathsf{WSPT}}}{B_{\mathsf{OPT}}}\right\}$$

Objective Function in Terms of Machine Loads (for $w_j = p_j$)

 $L_3 \quad L_2 \quad L_1 \text{ time}$

•
$$\sum_{i} L_{i} = \sum_{j} p_{j}$$
 (fixed)
• $\sum_{i} L_{i}^{2}$ minimal if $L_{1} = \cdots = L_{m}$

Martin Skutella

Second Reduction: Large Jobs and 'Sand' $^{\text{TM}}$ (G.J. Woeginger)

$$\sum_{j} p_{j} C_{j} = \frac{1}{2} \sum_{i} L_{i}^{2} + \frac{1}{2} \sum_{j} p_{j}^{2}$$

WSPT:

∑_i L_i² remains unchanged
 ∑_j p_j² decreased by δ ≥ 0

OPT:

- \blacktriangleright $\sum_{i} L_{i}^{2}$ unchanged or decreases
- $\sum_{j} p_{j}^{2}$ decreased by same $\delta \geq 0$

 $\implies \ \ \frac{\mathsf{WSPT}}{\mathsf{OPT}} \ \, \text{unchanged or increased}$

Third Reduction: Make Large Jobs Extra-Large

WSPT schedule

Increase in objective:

$$\frac{1}{2}\sum_{i} \left((1+y_i)^2 + y_i^2 - (1+x_i)^2 - x_i^2 \right) \qquad \frac{1}{2}\sum_{i} \left(y_i^2 - x_i^2 \right) \ge 0$$
$$= \sum_{i} \left(y_i^2 - x_i^2 \right) \qquad \text{as } \sum_{i} x_i = \sum_{i} y_i$$

Martin Skutella

schedulingseminar.com

May 12, 2021

OPT schedule

Fourth Reduction: All Extra-Large Jobs have Same Size

OPT schedule

WSPT schedule

Increase in objective:

$$\begin{split} & \frac{1}{2} \sum_{i} \left((1+z_{i})^{2} + z_{i}^{2} - (1+y_{i})^{2} - y_{i}^{2} \right) \qquad \sum_{i} \left(z_{i}^{2} - y_{i}^{2} \right) \leq 0 \\ & = \sum_{i} \left(z_{i}^{2} - y_{i}^{2} \right) \qquad \text{as } \sum_{i} z_{i} = \sum_{i} y_{i} \end{split}$$

Martin Skutella

schedulingseminar.com

Analyzing the Performance Ratio

WSPT schedule

WSPT =
$$\frac{m}{2} + k \cdot x(1+x)$$
 OPT = $k \cdot x^2 + \frac{m^2}{2(m-k)}$

$$\frac{\text{WSPT}}{\text{OPT}} = \frac{(m-k)(2kx^2 + 2kx + m)}{(m-k)2kx^2 + m^2}$$

Observation: for fixed k, m, maximum ratio at $x = \frac{m}{\sqrt{k(2m-k)} - k}$

Martin Skutella

schedulingseminar.com

May 12, 2021

OPT schedule

Worst-Case Instances

worst-case performance ratio for fixed *m*: $\max_{k} \left(1 - \frac{k}{2m} + \sqrt{\frac{k}{2m}(1 - \frac{k}{2m})}\right)$

Observation: for each fixed *m*, maximum at $k = \lfloor (1 - \frac{1}{2}\sqrt{2})m \rfloor$.

Stochastic Scheduling on Identical Parallel Machines

Given: distributions of independent random processing times $p_j \ge 0$

Task: find *m*-machine scheduling policy minimizing $E\left[\sum w_j C_j\right]$

scheduling policy must be non-anticipative, i.e., decision made at time t may only depend on the information known at time t

Weighted Shortest Expected Processing Time (WSEPT)

WSEPT Rule

List scheduling in order of non-increasing $w_j / E[\mathbf{p}_j]$.

- WSEPT is optimal for single machine (Rothkopf 1966)
- ► WSEPT has performance ratio 1 + ¹/₂(1 + Δ) with Δ ≥ Var[p_j]/E[p_j]² for all j. (Möhring, Schulz & Uetz 1999)
- WSEPT has no constant performance ratio. (Cheung, Fischer, Matuschke & Megow 2014; Im, Moseley & Pruhs 2015)
- WSEPT has performance ratio $1 + \frac{1}{2}(\sqrt{2} 1)(1 + \Delta)$. (Jäger & Sk. 2018)

Open Problem Online setting:

- > jobs arrive one by one; must be immediately assigned to machines
- on each machine, assigned jobs are optimally sequenced (WSPT)

Algorithm MinIncrease

assign job to machine minimizing increase of current objective value

Known results:

- MinIncrease has competitive ratio $\frac{3}{2} \frac{1}{2m}$.
- ▶ If jobs arrive in order of non-increasing or non-decreasing w_j/p_j , then MinIncrease achieves competitive ratio $\frac{1}{2}(1 + \sqrt{2})$.

Conjecture (Stougie 2017).

MinIncrease has competitive ratio $\frac{1}{2}(1+\sqrt{2})$.

Some References

- J. Bruno, E. G. Coffman, Jr., and R. Sethi: Scheduling independent tasks to reduce mean finishing time, Commun. ACM 17(7):382-387, 1974
- W. L. Eastman, S. Even, and I. M. Isaacs: Bounds for the Optimal Scheduling of n Jobs on m Processors, Management Science 11(2):268-279, 1964
- M.X. Goemans and D. P. Williamson: Two-Dimensional Gantt Charts and a Scheduling Algorithm of Lawler, SIAM J. Discrete Math. 13(3):281-294, 2000
- S. Jäger: Approximation in Deterministic and Stochastic Machine Scheduling, PhD thesis, TU Berlin, 2021
- S. Jäger, M. Skutella: Generalizing the Kawaguchi-Kyan Bound to Stochastic Parallel Machine Scheduling, STACS 2018: 43:1-43:14
- T. Kawaguchi and S. Kyan: Worst Case Bound of an LRF Schedule for the Mean Weighted Flow-time Problem, SIAM J. Comput. 15(4):1119-1129, 1986
- N. Megow, M. Uetz, and T. Vredeveld: Models and Algorithms for Stochastic Online Scheduling, Math. Oper. Res. 31(3):513-525, 2006
- R. H. Möhring, A. S. Schulz, and M. Uetz: Approximation in Stochastic Scheduling: The Power of LP-Based Priority Policies, J. ACM 46(6):924-942, 1999
- M. H. Rothkopf: Scheduling with random service times, Man. Sci. 12(9): 707-713, 1966
- S.K.Sahni: Algorithms for Scheduling Independent Tasks, J. ACM 23(1):116-127, 1976
- U. Schwiegelshohn: An Alternative Proof of the Kawaguchi-Kyan Bound for the Largest-Ratio-First Rule, Oper. Res. Lett. 39:255-259, 2011
- M. Skutella and G. J. Woeginger: A PTAS for Minimizing the Total Weighted Completion Time on Identical Parallel Machines, Math. Oper. Res. 25(1):63-75, 2000
- ▶ W. E. Smith: Various Optimizers for Single-stage Production, Naval Res. Logist. Quart. 3(1-2):59-66, 1956

Martin Skutella

schedulingseminar.com