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Late payments: the silent killer

Source: Intrum’s European Payment Report 2023
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Late payments: the silent killer

Chasing payments is costing Europe a quarter of a trillion euros a year

Source: Intrum’s European Payment Report 2023

Maria Elena Bruni



Introduction Risk Heuristic Computational results Conclusions and future work

Late payments: the silent killer

Source: https://www.euronews.com/business/2023/09/05/
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Projects
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Construction sector

Construction companies depend on positive cash flows for their
daily functioning
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Research motivation

How do firms compensate the lack of liquidity generated by
(uncertain) payment delays?

Features of the problem

NPV with delayed payments

Financing costs

Uncertainty

Risk aversion
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Literature review

Year Authors Payments Uncertainty Risk DR Financing cost
2003 Vanhoucke et al. Progress X X X X
2005 Mika et al. Different modes X X X X
2005 Ke and Liu X Activity duration Chance constraints X X
2010 Wiesemann et al. X Activity duration & Cash flows X X X
2016 Leyman and Vanhoucke At compl. times X X X X
2017 Leyman and Vanhoucke At compl. times X X X X
2019 Liang et al. X Activity duration X X X
2020 Rezaei et al. X Activity duration CVaR X X
2021 Peymankar et al. X Cash Flows X X X

This paper At compl. times Payments delays CVaR Yes Yes

Two-stage distributionally robust model with and without risk
aversion for the NPV maximization with financing costs
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Example

Delay in payment for activities 4 and 5
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Example
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Feature of the problem

Activities

• Precedence relations

Time related concerns

• Deadline

Cost related concerns

• Discounted cash flow
analysis (NPV)

NPV is calculated by
taking a sum of all
the income and expenses
over the time period
chosen, and discounting
it back to the present
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Deterministic problem

Input

V : set of all nodes

E : set of all arcs (i.e.
immediate precedence
relationships)

T : time horizon

d : deadline for the
completion of the project

β: discount rate

pi : duration of activity
i ∈ V

c ini /c
out
i : cash

inflow/outflow of activity
i ∈ V (c ini > 0),(couti < 0)

max
∑
i∈V

∑
t∈T

couti

(1 + β)t
xit +

c ini
(1 + β)t

qit∑
t∈T

xit = 1 ∀i ∈ V

∑
t∈T

txjt ≥
∑
t∈T

txit + pi ∀(i , j) ∈ E

∑
t∈T

tqit =
∑
t∈T

txit + pi ∀i ∈ V

∑
t∈T

qit = 1 ∀i ∈ V

∑
t∈T

tx(n+1)t + pn+1 ≤ d

qit , xit ∈ {0, 1} ∀i ∈ V , t ∈ T
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Max NPV Problem

Uncertainty

Ambiguity

Risk

This talk
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Setting the problem as a two-stage SIP

(Stage 1 decision ) –Uncertainty—Stage 2 decision

Find a schedule

Goal: Maximize first stage objective+ Expected value of the
second stage decisions

Hedge against uncertainty= Enhance resilience
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Setting the problem as a two-stage SIP

(Stage 1 decision ) –Uncertainty—Stage 2 decision

If, when, and how much to use short-term financing

Goal: Maximize first stage objective+ Expected value of the
second stage decisions

Hedge against uncertainty= Enhance resilience
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General SIP formulation

max f (x) = cT x + E [Q(x , ω)]

s.t. Ax ≥ b, x ∈ Rn1−p1 ×Zp1

Q(x , ω) = max q(ω)T z

s.t. Wz ≥ h(ω)− T (ω)x

z ∈ Rn2−p2 ×Zp2

where

ω random event

Q(x , ω) is the
second-stage
objective function

T (ω) is the recourse
matrix

x are first-stage
decisions

z are second-stage
decisions
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Decision Variables

First-stage

xit =

{
1 if activity i ∈ V starts at time t ∈ T ;

0 otherwise

Second-Stage

qωit =


1 if payment for activity i is received at time t

under scenario ω ∈ Ω;

0 otherwise
lωt ≥ 0 short-term loan contracted at period t in scenario ω
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First-stage model

ENPV = max
∑
i∈V

∑
t∈T

couti

(1 + β)t
xit + Eξ[Q(x, ξ(ω))]∑

t∈T
xit = 1 ∀i ∈ V∑

t∈T
txjt ≥

∑
t∈T

txit + pi ∀(i , j) ∈ E∑
t∈T

tx(n+1)t + pn+1 ≤ d

xit ∈ {0, 1} ∀i ∈ V , t ∈ T

Maria Elena Bruni



Introduction Risk Heuristic Computational results Conclusions and future work

Second stage constraints (∀ω ∈ Ω)

∑
t∈T

tqωit =
∑
t∈T

txit + pi + ξωi ∀i ∈ V∑
t∈T

qωit = 1 ∀i ∈ V

C0 +
∑
i∈V

∑
t′≤t

couti xit′ +
∑
i∈V

∑
t′≤t

c ini qωit′ +
∑
t′≤t

lωt ≥ 0 ∀t ∈ T

qωit ∈ {0, 1} ∀i ∈ V , t ∈ T

lωt ≥ 0 ∀t ∈ T
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Recourse function

Q(x, ξ(ω)) =

= max
∑
i∈V

∑
t∈T

c ini
(1 + β)t

qωit +
∑
t∈T

lωt
(1 + β)t

−
∑
t∈T

lωt (1 + r)T −t

(1 + β)T
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Borrowing policy

25

(1 + β)4
− 25(1 + r)9−4

(1 + β)9
5

(1 + β)4
+

20

(1 + β)6
−5(1 + r)9−4

(1 + β)9
−20(1 + r)9−6

(1 + β)9

If β > r then A is better, otherwise B
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Well known risk and safety measures

VaR(z̃) = min
η
(η|P(z̃ ≤ η) = Fz̃(η) ≥ β)

Conditional Value at Risk

Quantifies the expected value of the random variable z̃ in the
worst 1− β% of cases described as follows:

CVaR = E [z̃ |z̃ ≥ VaR].
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Well known risk and safety measures

SVaR(z̃) = max
η

(η|P(z̃ ≥ η) ≥ α)

Conditional Value at Risk

Quantifies the expected value of the random variable z̃ in the
worst 1− α% of cases described as follows:

SCVaR = E [z̃ |z̃ ≤ SVaR].
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Reformulation for discrete set of scenarios

Conditional Value at Risk

SCVaR[Q(x, ξ(ω))] = max
η∈R+

η −
Eξ[(η − Q(x, ξ(ω)))+]

1− α

Reformulation

max
η∈R+

η −
∑

ω Pωγω

1− α

γω = η − Q(x, ξ(ω)) ∀ω
γω ≥ 0 ∀ω
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Ambiguity in the probability distribution

Let Ξ be a family of probability distributions with given char-
acteristics.

Box Ambiguity Set

Ξ = {p = p0 + π|eTπ = 0, ∥π∥1 ≤ Ψ}

where π is a perturbation vector and Ψ ∈ [0, 1] is the upper
bound of the fluctuation.
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inf
ξ∈Ξ

max
η∈R+

η −
Eξ[(η − Q(x, ξ(ω)))+]

1− α

max
η∈R+

η − 1

1− α
min
ξ∈Ξ

Eξ[(η − Q(x, ξ(ω)))+]
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inf
ξ∈Ξ

max
η∈R+

η −
Eξ[(η − Q(x, ξ(ω)))+]

1− α

max
η∈R+

η − 1

1− α
min
ξ∈Ξ

Eξ[(η − Q(x, ξ(ω)))+]
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Toward a deterministic reformulation

max
η∈R+

η − 1

1− α
min
ξ∈Ξ

Eξ[(η − Q(x, ξ(ω)))+]

min γTp =
∑
ω

pωγω

γω = η − Q(x, ξ(ω)) ∀ω
γω ≥ 0 ∀ω

min
π
γTp

γω = η − Q(x, ξ(ω)) ∀ω
γω ≥ 0 ∀ω
p = p0 + π

eTπ = 0

∥π∥1 ≤ Ψ
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Toward a deterministic reformulation

min
π
γTp

γω = η − Q(x, ξ(ω)) ∀ω
γω ≥ 0 ∀ω
p = p0 + π

eTπ = 0

∥π∥1 ≤ Ψ

γTp0 +min
π
γTπ

γω = η − Q(x, ξ(ω)) ∀ω
γω ≥ 0 ∀ω
eTπ = 0

−π ≤ Ψ

π ≤ Ψ

Ψ = Ψe
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Toward a deterministic reformulation

γTp0 +min
π
γTπ

eTπ = 0

µ

− π ≤ Ψ

β

π ≤ Ψ

δ
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Toward a deterministic reformulation

γTp0 +min
π
γTπ

eTπ = 0 µ

− π ≤ Ψ β

π ≤ Ψ δ
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Toward a deterministic reformulation

γTp0 +min
π
γTπ

eTπ = 0 µ

− π ≤ Ψ β

π ≤ Ψ δ

γTp0 + max
β,δ,µ

ΨTβ +ΨT δ

eµ− β + δ = γ

β ≥ 0

δ ≥ 0

µ free
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The risk-averse distributional robust model

max
∑
i∈V

∑
t∈T

couti

(1 + β)t
xit + η − γTp0 +ΨTβ +ΨT δ

1− α

First and second stage constraints

eµ− β + δ = γ

β ≥ 0

δ ≥ 0

γ ≥ 0

µ free
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Heuristic
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Master problem

MP0 = max
∑
i∈V

∑
t∈T

couti

(1 + β)t
xit + ζ

ζ ≤
∑
i∈V

∑
t∈T

c ini

(1 + β)t
q̂it +

∑
t∈T

l̂t

(1 + β)t
−

∑
t∈T

l̂t (1 + r)T −t

(1 + β)T∑
t∈T

xit = 1 ∀i ∈ V

∑
t∈T

txjt ≥
∑
t∈T

txit + pi ∀(i, j) ∈ E

∑
t∈T

tx(n+1)t + pn+1 ≤ d

∑
t∈T

tq̂it =
∑
t∈T

txit + pi + ξ̂i ∀i ∈ V

∑
t∈T

q̂it = 1 ∀i ∈ V

C0 +
∑
i∈V

∑
t′≤t

couti xit′ +
∑
i∈V

∑
t′≤t

c ini q̂it′ +
∑
t′≤t

l̂t ≥ 0 ∀t ∈ T

xit ∈ {0, 1} ∀i ∈ V , t ∈ T

q̂it ∈ {0, 1} ∀i ∈ V , t ∈ T

l̂t ≥ 0 ∀t ∈ T
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Subproblem

qκωit =

{
1, if

∑
t′∈T (t

′xκit′ + pi + ξκωi ) = t

0, otherwise.
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Subproblem

Qκ
LB = max η −

∑
ω∈Ω[γ

ωpω0 + Ψωβω + Ψωδω ]

1 − α∑
t′≤t

lωt ≥
∑
i∈V

∑
t′≤t

couti xκit′ +
∑
i∈V

∑
t′≤t

c ini qκω
it′ ∀t ∈ T , ∀ω ∈ Ω

γ
ω = η −

∑
t∈T

c ini

(1 + β)t
qκω
it +

∑
t∈T

lωt

(1 + β)t
−

∑
t∈T

lωt (1 + r)T −t

(1 + β)T
∀ω ∈ Ω

µ − β
ω + δ

ω = γ
ω ∀ω ∈ Ω

β
ω ≥ 0 ∀ω ∈ Ω

δ
ω ≥ 0 ∀ω ∈ Ω

γ
ω ≥ 0 ∀ω ∈ Ω

lωt ≥ 0 ∀t ∈ T , ∀ω ∈ Ω

µ free
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Cuts

Integer cut

ζ ≤ (Qκ
LB)[1 +

∑
i∈V ,t∈T |xκit =1

(1− xit) +
∑

i∈V ,t∈T |xκit =0

xit ]

No-good cut ∑
(i , t)|xκit =1

(1− xit) ≥ 1
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Sensitivity to the loan interest rate

Maria Elena Bruni



Introduction Risk Heuristic Computational results Conclusions and future work

Two-stage stochastic model

Maria Elena Bruni



Introduction Risk Heuristic Computational results Conclusions and future work

Sensitivity to ψ and α values

Figure: NPV function for different ψ and α values.
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Price of distributional robustness

Figure: Price of distributional robustness for different values of ψ and α.
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Heuristic performance

10 instances from the DC2 data set of Vanhoucke (2010)

9 combinations of the distribution of the cash flow

Three values (0.25, 0.50, 0.75) for the capital constrainedness
(CC)

Three scenarios cardinalities |Ω| = {20, 40, 60}
Four values for ψ = 0, 0.05, 0.1, 0.2

Four values for α = 0, 0.1, 0.3, 0.5
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Heuristic performance

Figure: Heuristic versus exact solution: CPU time.
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Figure: Heuristic Gap% for different scenario cardinalities.
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Limitations

The size of the model

Future research

Design of a tailored solution approach

Different payments modes

Hybridization with forecasting techniques
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