Recent Advances in Flow Time Scheduling

Lars Rohwedder
(1) Maastricht

Scheduling Seminar

flow time $=$ time between arrival/release and completion

flow time $=$ time between arrival/release and completion

A few reasons why you should be interested:

- natural and classic measure of quality-of-service in scheduling
- related to completion time minimization (completion time $=$ flow time if job released at zero)
- intuitively should be much harder than optimizing completion time, but there are surprises

Why it seems harder

optimal schedule:
released here

Why it seems harder

optimal schedule:
released here

slightly suboptimal schedule:

Why it seems harder

optimal schedule:
released here

slightly suboptimal schedule:

\rightsquigarrow breaks many known techniques

Three concrete examples

Fundamental problems in flow time scheduling

$$
\begin{array}{l|ll}
1 \mid \text { pmpt } r_{j} \mid \sum_{j} w_{j} F_{j} & \text { NP-hard, } \leq O(1) & \\
P\left|r_{j}\right| F_{\max } & \text { NP-hard, } \leq 3 \\
R\left|r_{j}\right| F_{\max } & \geq 1.5, & \leq O(\log n)
\end{array} \quad \text { (state: 3 years ago) }
$$

Related problems considering completion time

$$
\begin{array}{l|ll}
1 \mid \text { pmpt, } r_{j} \mid \sum_{j} w_{j} C_{j} & \text { NP-hard, } & \text { PTAS } \\
P \| C_{\max } & \text { NP-hard, } & \text { PTAS } \\
R \| C_{\max } & \geq 1.5, & \leq 2
\end{array}
$$

Three concrete examples

Fundamental problems in flow time scheduling

$$
\begin{array}{l|ll}
1\left|\mathrm{pmpt}, r_{j}\right| \sum_{j} w_{j} F_{j} & \text { NP-hard, } & \text { PTAS } \\
P\left|r_{j}\right| F_{\max } & \text { NP-hard, } & \leq 3 \\
R\left|r_{j}\right| F_{\max } & \geq 1.5, & \leq O(\log n)
\end{array}
$$

Related problems considering completion time

$$
\begin{array}{l|ll}
1 \mid \text { pmpt, } r_{j} \mid \sum_{j} w_{j} C_{j} & \text { NP-hard, } & \text { PTAS } \\
P \| C_{\max } & \text { NP-hard, } & \text { PTAS } \\
R \| C_{\max } & \geq 1.5, & \leq 2
\end{array}
$$

Three concrete examples

Fundamental problems in flow time scheduling

$$
\begin{array}{l|ll}
1 \mid \text { pmpt }, r_{j} \mid \sum_{j} w_{j} F_{j} & \text { NP-hard, } & \text { PTAS } \\
P\left|r_{j}\right| F_{\max } & \text { NP-hard, } & \leq 3 \\
R\left|r_{j}\right| F_{\max } & \geq 1.5, & \leq O(\sqrt{\log n})^{*}
\end{array}
$$

Related problems considering completion time

$$
\begin{array}{l|ll}
1 \mid \text { pmpt, } r_{j} \mid \sum_{j} w_{j} C_{j} & \text { NP-hard, } & \text { PTAS } \\
P \| C_{\max } & \text { NP-hard, } & \text { PTAS } \\
R \| C_{\max } & \geq 1.5, & \leq 2
\end{array}
$$

* non-constructive integrality gap
$1\left|\mathrm{pmpt}, r_{j}\right| \sum_{j} w_{j} F_{j}$
jobs:

$1\left|\mathrm{pmpt}, r_{j}\right| \sum_{j} w_{j} F_{j}$
jobs:

schedule:

flow time $\left(F_{j}\right)$:

$1\left|\mathrm{pmpt}, r_{j}\right| \sum_{j} w_{j} F_{j}$
jobs:

schedule:

flow time $\left(F_{j}\right)$:

objective:

$$
\operatorname{minimize} \sum_{j} w_{j} F_{j}
$$

- Batra, Garg, Kumar (STOC'18): Framework and first $O(1)$-approximation (pseudo-poly. time)
- Feige, Kulkarni, Li (SODA'19): Assume w.l.o.g. that input numbers are polynomially bounded
- R., Wiese (STOC'21): $(2+\epsilon)$-approximation
- Armbruster, R., Wiese (unpublished): PTAS

Covering integer program

$$
x_{j, t} \equiv \text { job } j \text { has not finished at time } t
$$

$$
\begin{array}{rlr}
\min \sum_{j \in J} \sum_{t \geq r_{j}} w_{j} x_{j, t} & \\
\sum_{\substack{j \in J \\
s \leq r_{j} \leq t}} x_{j, t} \cdot p_{j} \geq \sum_{\substack{j \in J \\
s \leq r_{j} \leq t}} p_{j}-(t-s) & \forall s \leq t \\
& x_{j, t} \geq x_{j, t+1} & \\
x_{j, t} \in\{0,1\} & \forall j \in J, t>r_{j} \\
& \forall j \in J, t \in\left\{r_{j}, r_{j}+1, \ldots\right\}
\end{array}
$$

From a different perspective

From a different perspective

From a different perspective

Avoiding the prefix constraint

cost: w_{j}

Avoiding the prefix constraint (cont'd)

Using more involved (still exponentially growing) grouping.

simple intersection

\rightsquigarrow loses factor 32

Avoiding the prefix constraint (cont'd)

Using more involved (still exponentially growing) grouping.

simple intersection

\rightsquigarrow loses factor 32
can be reduced to $(1+\epsilon)$ with some extra technicalities.

Recap

- Given hierarchically aligned rectangles
- Select a subset of rectangles of minimal cost
- Such that all demands are covered

Recap

- Given hierarchically aligned rectangles
- Select a subset of rectangles of minimal cost
- Such that all demands are covered

Recap

- Given hierarchically aligned rectangles
- Select a subset of rectangles of minimal cost
- Such that all demands are covered

Recap

- Given hierarchically aligned rectangles
- Select a subset of rectangles of minimal cost
- Such that all demands are covered

Dynamic program

The hierarchical alignment allows for dynamic programming.

What do we need to know from the rest of the solution to determine the optimal solution of the subproblem?

Naive: how much is already covered for all demand rays that intersect the subproblem. \rightsquigarrow too much information.

A closer look at the demands

$$
\sum_{\substack{j \in J: s \leq r_{j} \leq t \\ \text { rect. selected }}} p_{j} \geq \sum_{j \in J: s \leq r_{j} \leq t} p_{j}-(t-s)
$$

A closer look at the demands

$$
\sum_{\substack{j \in J: s \leq r_{j}<s^{\prime} \\ \text { rect. selected }}} p_{j}+\sum_{\substack{j \in J: s^{\prime} \leq r_{j} \leq t \\ \text { rect. selected }}} p_{j} \geq \sum_{j \in J: s \leq r_{j}<s^{\prime}} p_{j}-\left(s^{\prime}-s\right)+\sum_{j \in J: s^{\prime} \leq r_{j} \leq t} p_{j}-\left(t-s^{\prime}\right)
$$

A closer look at the demands

$$
\sum_{\substack{j \in J: s \leq r_{j}<s^{\prime} \\ \text { rect. selected }}} p_{j}+\sum_{\substack{j \in J: s^{\prime} \leq r_{j} \leq t \\ \text { rect. selected }}} p_{j} \geq \sum_{j \in J: s \leq r_{j}<s^{\prime}} p_{j}-\left(s^{\prime}-s\right)+\sum_{j \in J: s^{\prime} \leq r_{j} \leq t} p_{j}-\left(t-s^{\prime}\right)
$$

Fixing the solution outside the subproblem, we only need to satisfy constraint for s^{\prime}, t with a certain extra slack (same for all t)

A closer look at the demands

$\sum_{\substack{j \in J: s \leq r_{j}<s^{\prime} \\ \text { rect. selected }}} p_{j}+\sum_{\substack{j \in J: s^{\prime} \leq r_{j} \leq t \\ \text { rect. selected }}} p_{j} \geq \sum_{j \in J: s \leq r_{j}<s^{\prime}} p_{j}-\left(s^{\prime}-s\right)+\sum_{j \in J: s^{\prime} \leq r_{j} \leq t} p_{j}-\left(t-s^{\prime}\right)$
Fixing the solution outside the subproblem, we only need to satisfy constraint for s^{\prime}, t with a certain extra slack (same for all t)
\rightsquigarrow in DP "guess" the extra slack.

Summary

- Problem can be solved in pseudopolynomial time using DP over a tree + structural insights.
- Reduction not lossless, but error can be made $(1+\epsilon)$ using additional technical work
\rightsquigarrow PTAS for sum of weighted flow time on a single machine.

Next

Goal: minimize max flow time $\max _{j} F_{j}$.

Condition for maximum flow time

Need to bound load on each interval of release times:

$$
\sum_{\substack{s \leq r_{j} \leq t \\ j \rightarrow i}} p_{i j} \leq t-s+F_{\max } .
$$

Bansal-Kulkarni (STOC'15): Iterative rounding.
\leadsto rounding half of the variables incurs error $O(\mathrm{OPT})$
\rightsquigarrow final solution worse by factor $O(\log n)$

Bansal-Kulkarni (STOC'15): Iterative rounding.
\leadsto rounding half of the variables incurs error $O(\mathrm{OPT})$
\leadsto final solution worse by factor $O(\log n)$
Bansal, R., Svensson (STOC'22): $O(\sqrt{\log n})$ using results from discrepancy (that rely on different methods from convex geometry).

Assume for simplicity we already have a half integral solution

Assume for simplicity we already have a half integral solution

Assume for simplicity we already have a half integral solution

Assume for simplicity we already have a half integral solution

Assume for simplicity we already have a half integral solution

Prefix Beck-Fiala

Given a series of n vectors with ℓ_{1}-norm $\leq T$

$$
v_{1}=\left(\begin{array}{c}
0 \\
0.1 \\
0 \\
-0.5 \\
0
\end{array}\right), v_{2}=\left(\begin{array}{c}
0 \\
0 \\
0 \\
0.9 \\
-0.9
\end{array}\right), v_{3}=\left(\begin{array}{c}
0.5 \\
0 \\
-0.7 \\
0 \\
0
\end{array}\right), v_{4}=\left(\begin{array}{c}
0 \\
0 \\
0.9 \\
-0.7 \\
0
\end{array}\right), \ldots
$$

show there exist signs $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}, \ldots \in\{-1,1\}$ s.t. for all $\ell \leq h$

$$
\left\|\varepsilon_{\ell} v_{\ell}+\varepsilon_{\ell+1} v_{\ell+1}+\cdots+\varepsilon_{h} v_{h}\right\|_{\infty} \leq \text { "some upper bound" }
$$

Prefix Beck-Fiala

Given a series of n vectors with ℓ_{1}-norm $\leq T$

$$
v_{1}=\left(\begin{array}{c}
0 \\
0.1 \\
0 \\
-0.5 \\
0
\end{array}\right), v_{2}=\left(\begin{array}{c}
0 \\
0 \\
0 \\
0.9 \\
-0.9
\end{array}\right), v_{3}=\left(\begin{array}{c}
0.5 \\
0 \\
-0.7 \\
0 \\
0
\end{array}\right), v_{4}=\left(\begin{array}{c}
0 \\
0 \\
0.9 \\
-0.7 \\
0
\end{array}\right), \ldots
$$

show there exist signs $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}, \ldots \in\{-1,1\}$ s.t. for all $\ell \leq h$

$$
\left\|\varepsilon_{\ell} v_{\ell}+\varepsilon_{\ell+1} v_{\ell+1}+\cdots+\varepsilon_{h} v_{h}\right\|_{\infty} \leq \text { "some upper bound" }
$$

Banaszczyk'98, Banaszczyk'12: $O(\sqrt{\log n} \cdot T)$ suffices
$\leadsto O(\sqrt{\log n})$ integrality gap \because
(works also beyond the half-integral case)

Summary

Theorem
Integrality gap of LP for max flow time $\leq O(\sqrt{\log n})^{*}$
Theorem
Integrality gap of LP for total flow time $\leq O\left(\log ^{3 / 2} n\right)^{*}$
(Known lower bound is $\Omega(\log n)$)

* bounds are non-constructive, because Banaszczyk's proof does not yield an efficient algorithm

Conclusion

Does the lack of good algorithms for optimizing flow time (compared to completion time) come from inherent hardness or have we simply not found the right techniques, yet?

Conclusion

Does the lack of good algorithms for optimizing flow time (compared to completion time) come from inherent hardness or have we simply not found the right techniques, yet?

Progress on $1 \mid$ pmpt, $r_{j} \mid \sum_{j} w_{j} F_{j}$ and $R\left|r_{j}\right| F_{\text {max }}$ speaks in favor of the latter.

Conclusion

Does the lack of good algorithms for optimizing flow time (compared to completion time) come from inherent hardness or have we simply not found the right techniques, yet?

Progress on $1 \mid$ pmpt, $r_{j} \mid \sum_{j} w_{j} F_{j}$ and $R\left|r_{j}\right| F_{\text {max }}$ speaks in favor of the latter.

Favorite open questions:

- constant approximation for $R\left|r_{j}\right| F_{\max }$ (linked to Discrepancy)
- 2.99-approximation for $P\left|r_{j}\right| F_{\max }$

Conclusion

Does the lack of good algorithms for optimizing flow time (compared to completion time) come from inherent hardness or have we simply not found the right techniques, yet?

Progress on $1 \mid$ pmpt, $r_{j} \mid \sum_{j} w_{j} F_{j}$ and $R\left|r_{j}\right| F_{\text {max }}$ speaks in favor of the latter.

Favorite open questions:

- constant approximation for $R\left|r_{j}\right| F_{\max }$ (linked to Discrepancy)
- 2.99-approximation for $P\left|r_{j}\right| F_{\max }$

Thanks!

