
Recent Advances in Flow Time Scheduling

Lars Rohwedder

Scheduling Seminar

1

flow time = time between arrival/release and completion

job j

processing timereleased here

flow time
time

2

flow time = time between arrival/release and completion

job j

processing timereleased here

flow time
time

2

A few reasons why you should be interested:

• natural and classic measure of quality-of-service in scheduling

• related to completion time minimization

(completion time = flow time if job released at zero)

• intuitively should be much harder than optimizing completion

time, but there are surprises

3

Why it seems harder

optimal schedule: released here

flow time

slightly suboptimal schedule:

flow time

⇝ breaks many known techniques

4

Why it seems harder

optimal schedule: released here

flow time

slightly suboptimal schedule:

flow time

⇝ breaks many known techniques

4

Why it seems harder

optimal schedule: released here

flow time

slightly suboptimal schedule:

flow time

⇝ breaks many known techniques

4

Three concrete examples

Fundamental problems in flow time scheduling

1 | pmpt, rj |
∑

j wjFj NP-hard, ≤ O(1)

P | rj | Fmax NP-hard, ≤ 3 (state: 3 years ago)

R | rj | Fmax ≥ 1.5, ≤ O(log n)

Related problems considering completion time

1 | pmpt, rj |
∑

j wjCj NP-hard, PTAS

P || Cmax NP-hard, PTAS

R || Cmax ≥ 1.5, ≤ 2

* non-constructive integrality gap

5

Three concrete examples

Fundamental problems in flow time scheduling

1 | pmpt, rj |
∑

j wjFj NP-hard, PTAS

P | rj | Fmax NP-hard, ≤ 3

R | rj | Fmax ≥ 1.5, ≤ O(log n)

Related problems considering completion time

1 | pmpt, rj |
∑

j wjCj NP-hard, PTAS

P || Cmax NP-hard, PTAS

R || Cmax ≥ 1.5, ≤ 2

* non-constructive integrality gap

5

Three concrete examples

Fundamental problems in flow time scheduling

1 | pmpt, rj |
∑

j wjFj NP-hard, PTAS

P | rj | Fmax NP-hard, ≤ 3

R | rj | Fmax ≥ 1.5, ≤ O(
√
log n)*

Related problems considering completion time

1 | pmpt, rj |
∑

j wjCj NP-hard, PTAS

P || Cmax NP-hard, PTAS

R || Cmax ≥ 1.5, ≤ 2

* non-constructive integrality gap

5

1 | pmpt, rj |
∑

j wjFj

jobs:

wj = 1

wj = 100

wj = 2 wj = 1

pj

rj

schedule:

flow time (Fj):

objective:
minimize

∑
j wjFj

6

1 | pmpt, rj |
∑

j wjFj

jobs:

wj = 1

wj = 100

wj = 2 wj = 1

pj

rj

schedule:

flow time (Fj):

objective:
minimize

∑
j wjFj

6

1 | pmpt, rj |
∑

j wjFj

jobs:

wj = 1

wj = 100

wj = 2 wj = 1

pj

rj

schedule:

flow time (Fj):

objective:
minimize

∑
j wjFj

6

1 | pmpt, rj |
∑

j wjFj

jobs:

wj = 1

wj = 100

wj = 2 wj = 1

pj

rj

schedule:

flow time (Fj):

objective:
minimize

∑
j wjFj

6

1 | pmpt, rj |
∑

j wjFj

jobs:

wj = 1

wj = 100

wj = 2 wj = 1

pj

rj

schedule:

flow time (Fj):

objective:
minimize

∑
j wjFj

6

1 | pmpt, rj |
∑

j wjFj

jobs:

wj = 1

wj = 100

wj = 2 wj = 1

pj

rj

schedule:

flow time (Fj):

objective:
minimize

∑
j wjFj

6

1 | pmpt, rj |
∑

j wjFj

jobs:

wj = 1

wj = 100

wj = 2 wj = 1

pj

rj

schedule:

flow time (Fj):

objective:
minimize

∑
j wjFj

6

1 | pmpt, rj |
∑

j wjFj

jobs:

wj = 1

wj = 100

wj = 2 wj = 1

pj

rj

schedule:

flow time (Fj):

objective:
minimize

∑
j wjFj

6

• Batra, Garg, Kumar (STOC’18): Framework and first

O(1)-approximation (pseudo-poly. time)

• Feige, Kulkarni, Li (SODA’19): Assume w.l.o.g. that input

numbers are polynomially bounded

• R., Wiese (STOC’21): (2 + ϵ)-approximation

• Armbruster, R., Wiese (unpublished): PTAS

7

Covering integer program

xj ,t ≡ job j has not finished at time t

min
∑
j∈J

∑
t≥rj

wjxj ,t∑
j∈J

s≤rj≤t

xj ,t · pj ≥
∑
j∈J

s≤rj≤t

pj − (t − s) ∀s ≤ t

xj ,t ≥ xj ,t+1 ∀j ∈ J, t > rj

xj ,t ∈ {0, 1} ∀j ∈ J, t ∈ {rj , rj + 1, . . . }

8

From a different perspective

sorted by rj

j1

rj1

j2

rj2

j3

rj3

j4

rj4

j5

rj5
time

xj ,t ≥ xj ,t+1

∑
j∈J

s≤rj≤t

xj ,t · pj ≥ . . . ∀s ≤ t

t

9

From a different perspective

sorted by rj

j1

rj1

j2

rj2

j3

rj3

j4

rj4

j5

rj5
time

xj ,t ≥ xj ,t+1

∑
j∈J

s≤rj≤t

xj ,t · pj ≥ . . . ∀s ≤ t

t

9

From a different perspective

sorted by rj

j1

rj1

j2

rj2

j3

rj3

j4

rj4

j5

rj5
time

xj ,t ≥ xj ,t+1

∑
j∈J

s≤rj≤t

xj ,t · pj ≥ . . . ∀s ≤ t

t

9

Avoiding the prefix constraint

cost: wj 2wj 4wj 8wj

complicated intersection

10

Avoiding the prefix constraint

cost: wj 2wj 4wj 8wj

complicated intersection

10

Avoiding the prefix constraint

cost: wj 2wj 4wj 8wj

complicated intersection

10

Avoiding the prefix constraint

cost: wj 2wj 4wj 8wj

complicated intersection

10

Avoiding the prefix constraint

cost: wj 2wj 4wj 8wj

complicated intersection

10

Avoiding the prefix constraint

cost: wj 2wj 4wj 8wj

complicated intersection

10

Avoiding the prefix constraint

cost: wj 2wj 4wj 8wj

complicated intersection

10

Avoiding the prefix constraint (cont’d)

Using more involved (still exponentially growing) grouping.

simple intersection

⇝ loses factor 32

can be reduced to (1 + ϵ) with some extra technicalities.

11

Avoiding the prefix constraint (cont’d)

Using more involved (still exponentially growing) grouping.

simple intersection

⇝ loses factor 32

can be reduced to (1 + ϵ) with some extra technicalities.

11

Recap

has demand

has weight, cost

• Given hierarchically aligned rectangles

• Select a subset of rectangles of minimal cost

• Such that all demands are covered

12

Recap

has demand

has weight, cost

• Given hierarchically aligned rectangles

• Select a subset of rectangles of minimal cost

• Such that all demands are covered

12

Recap

has demand

has weight, cost

• Given hierarchically aligned rectangles

• Select a subset of rectangles of minimal cost

• Such that all demands are covered

12

Recap

has demand

has weight, cost

• Given hierarchically aligned rectangles

• Select a subset of rectangles of minimal cost

• Such that all demands are covered

12

Dynamic program

The hierarchical alignment allows for dynamic programming.

subproblem

What do we need to know from the rest of the solution to

determine the optimal solution of the subproblem?

Naive: how much is already covered for all demand rays that

intersect the subproblem. ⇝ too much information.

13

A closer look at the demands

s

t

∑
j∈J:s≤rj≤t
rect. selected

pj ≥
∑

j∈J:s≤rj≤t

pj − (t − s)

Fixing the solution outside the subproblem, we only need to satisfy

constraint for s ′, t with a certain extra slack (same for all t)

⇝ in DP “guess” the extra slack.

14

A closer look at the demands

s

s ′

t

∑
j∈J:s≤rj<s′

rect. selected

pj +
∑

j∈J:s′≤rj≤t
rect. selected

pj ≥
∑

j∈J:s≤rj<s′

pj − (s ′ − s) +
∑

j∈J:s′≤rj≤t

pj − (t − s ′)

Fixing the solution outside the subproblem, we only need to satisfy

constraint for s ′, t with a certain extra slack (same for all t)

⇝ in DP “guess” the extra slack.

14

A closer look at the demands

s

s ′

t

∑
j∈J:s≤rj<s′

rect. selected

pj +
∑

j∈J:s′≤rj≤t
rect. selected

pj ≥
∑

j∈J:s≤rj<s′

pj − (s ′ − s) +
∑

j∈J:s′≤rj≤t

pj − (t − s ′)

Fixing the solution outside the subproblem, we only need to satisfy

constraint for s ′, t with a certain extra slack (same for all t)

⇝ in DP “guess” the extra slack.

14

A closer look at the demands

s

s ′

t

∑
j∈J:s≤rj<s′

rect. selected

pj +
∑

j∈J:s′≤rj≤t
rect. selected

pj ≥
∑

j∈J:s≤rj<s′

pj − (s ′ − s) +
∑

j∈J:s′≤rj≤t

pj − (t − s ′)

Fixing the solution outside the subproblem, we only need to satisfy

constraint for s ′, t with a certain extra slack (same for all t)

⇝ in DP “guess” the extra slack.

14

Summary

• Problem can be solved in pseudopolynomial time using DP

over a tree + structural insights.

• Reduction not lossless, but error can be made (1 + ϵ) using

additional technical work

⇝ PTAS for sum of weighted flow time on a single machine.

15

Next

parallel machines

16

R | rj | Fmax

proc. time pijproc. time pi ′j

Goal: minimize max flow time maxj Fj .

17

R | rj | Fmax

proc. time pijproc. time pi ′j

Goal: minimize max flow time maxj Fj .

17

R | rj | Fmax

proc. time pijproc. time pi ′j

Goal: minimize max flow time maxj Fj .

17

Condition for maximum flow time

Need to bound load on each interval of release times:∑
s≤rj≤t

j→i

pij ≤ t − s + Fmax.

s t

Fmax

18

Bansal-Kulkarni (STOC’15): Iterative rounding.

rounding half of the variables incurs error O(OPT)

final solution worse by factor O(log n)

Bansal, R., Svensson (STOC’22): O(
√
log n) using results from

discrepancy (that rely on different methods from convex geometry).

Discrepancy

Scheduling

better

guarantees

motivate new

questions

19

Bansal-Kulkarni (STOC’15): Iterative rounding.

rounding half of the variables incurs error O(OPT)

final solution worse by factor O(log n)

Bansal, R., Svensson (STOC’22): O(
√
log n) using results from

discrepancy (that rely on different methods from convex geometry).

Discrepancy

Scheduling

better

guarantees

motivate new

questions

19

Assume for simplicity we already have a half integral solution

- - - - + + + +

+ +- -

+1
2p1j

−1
2p2j

−1
2p1j

+1
2p2j±

1
2p1j

−1
2p2j

0

20

Assume for simplicity we already have a half integral solution

- - - - + + + +

+ +- -

+1
2p1j

−1
2p2j

−1
2p1j

+1
2p2j±

1
2p1j

−1
2p2j

0

20

Assume for simplicity we already have a half integral solution

- - - - + + + +

+ +- -

+1
2p1j

−1
2p2j

−1
2p1j

+1
2p2j±

1
2p1j

−1
2p2j

0

20

Assume for simplicity we already have a half integral solution

- - - - + + + +

+ +- -

+1
2p1j

−1
2p2j

−1
2p1j

+1
2p2j±

1
2p1j

−1
2p2j

0

20

Assume for simplicity we already have a half integral solution

- - - - + + + +

+ +- -

+1
2p1j

−1
2p2j

−1
2p1j

+1
2p2j±

1
2p1j

−1
2p2j

0

20

Prefix Beck-Fiala

Given a series of n vectors with ℓ1-norm ≤ T

v1 =


0

0.1

0

−0.5

0

 , v2 =


0

0

0

0.9

−0.9

 , v3 =


0.5

0

−0.7

0

0

 , v4 =


0

0

0.9

−0.7

0

 , . . .

show there exist signs ε1, ε2, ε3, ε4, . . . ∈ {−1, 1} s.t. for all ℓ ≤ h

∥εℓvℓ + εℓ+1vℓ+1 + · · ·+ εhvh∥∞ ≤ “some upper bound”

Banaszczyk’98, Banaszczyk’12: O(
√
log n · T) suffices

O(
√
log n) integrality gap

(works also beyond the half-integral case)

21

Prefix Beck-Fiala

Given a series of n vectors with ℓ1-norm ≤ T

v1 =


0

0.1

0

−0.5

0

 , v2 =


0

0

0

0.9

−0.9

 , v3 =


0.5

0

−0.7

0

0

 , v4 =


0

0

0.9

−0.7

0

 , . . .

show there exist signs ε1, ε2, ε3, ε4, . . . ∈ {−1, 1} s.t. for all ℓ ≤ h

∥εℓvℓ + εℓ+1vℓ+1 + · · ·+ εhvh∥∞ ≤ “some upper bound”

Banaszczyk’98, Banaszczyk’12: O(
√
log n · T) suffices

O(
√
log n) integrality gap

(works also beyond the half-integral case)

21

Summary

Theorem
Integrality gap of LP for max flow time ≤ O(

√
log n)*

Theorem
Integrality gap of LP for total flow time ≤ O(log3/2 n)*

(Known lower bound is Ω(log n))

* bounds are non-constructive, because Banaszczyk’s proof

does not yield an efficient algorithm

22

Conclusion

Does the lack of good algorithms for optimizing flow time

(compared to completion time) come from inherent hardness or

have we simply not found the right techniques, yet?

Progress on 1 | pmpt, rj |
∑

j wjFj and R | rj | Fmax speaks in favor

of the latter.

Favorite open questions:

• constant approximation for R | rj | Fmax (linked to

Discrepancy)

• 2.99-approximation for P | rj | Fmax

Thanks!

23

Conclusion

Does the lack of good algorithms for optimizing flow time

(compared to completion time) come from inherent hardness or

have we simply not found the right techniques, yet?

Progress on 1 | pmpt, rj |
∑

j wjFj and R | rj | Fmax speaks in favor

of the latter.

Favorite open questions:

• constant approximation for R | rj | Fmax (linked to

Discrepancy)

• 2.99-approximation for P | rj | Fmax

Thanks!

23

Conclusion

Does the lack of good algorithms for optimizing flow time

(compared to completion time) come from inherent hardness or

have we simply not found the right techniques, yet?

Progress on 1 | pmpt, rj |
∑

j wjFj and R | rj | Fmax speaks in favor

of the latter.

Favorite open questions:

• constant approximation for R | rj | Fmax (linked to

Discrepancy)

• 2.99-approximation for P | rj | Fmax

Thanks!

23

Conclusion

Does the lack of good algorithms for optimizing flow time

(compared to completion time) come from inherent hardness or

have we simply not found the right techniques, yet?

Progress on 1 | pmpt, rj |
∑

j wjFj and R | rj | Fmax speaks in favor

of the latter.

Favorite open questions:

• constant approximation for R | rj | Fmax (linked to

Discrepancy)

• 2.99-approximation for P | rj | Fmax

Thanks!

23

