Scheduling Heuristics for Steelmaking Continuous Casting Processes

Kangbok Lee

POSTECH, South Korea

Juntaek Hong, Kyungduk Moon, Kwansoo Lee (POSTECH), Michael L. Pinedo (NYU)

Scheduling Seminar Feb. 16, 2022

Summary

- •We consider a practical steelmaking-continuous casting scheduling problem.
- •We propose an **iterated greedy matheuristic(IGM)**, an intuitive method to solve the problem.
- •IGM performs well.

Table of Contents

Introduction

- Problem description
- •MIP formulation
- •Solution method: Iterated Greedy Matheuristic
- •Experimental results

Introduction

World crude steel production (in million metric tons)

1,900 1,800 1,700 1,600 China cuts back 1,500 1,400 1,300 1,200 Global Financial 1,100 Crisis 1,000 Asian Financia 900 Crisis 800 700 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 WOLFSTREET.com Source: wordsteel

Millions of tonnes, annual

Steel Production in the World

Pressure on Steelmaking Industry against Facility Expansion

July 13, 2019:

China plans to toughen emission checks on steel mills

BEIJING (Reuters) - China will continue to enforce production restrictions in heavy industry in winter this year and will tighten its emission assessment on steel mills when granting exemptions from curbs already in place, an environment ministry official said

Introduction

Pressure on Steelmaking Industry against Facility Expansion

 \equiv

Bloomberg Green

Subscribe

March 12, 2021: China Pollution Crackdown Exposes Rule Breakers in Top Steel Hub

China's top environmental official vowed to reinforce pollution curbs after inspections found some steel mills were violating output restrictions and faking documents.

A team led by Huang Runqiu, the minister of ecology and environment, on Thursday found four mills in the steelmaking hub of Tangshan weren't complying with production cuts put in place to reduce heavy pollution. Importance of steel scheduling

•Expansion of conventional facility is limited

•New technology for steel industry is currently inviable.

>Efficient operation of existing facilities is still crucial.

Introduction

Steel Production

1. Iron making

Steelmaking–Continuous Casting (SCC) process is typically the bottleneck

Flexible Flowshop with stage skipping

SCC Scheduling Problem

- •Parameters
- Variables
- Objective
- •Constraints

SCC Scheduling Problem

•Parameters

- SCC environment
- Charge
- Cast: a sequence of charges

SCC Scheduling Problem: Parameters

SCC environment

• Stages, machines, transportation time between stages

Required stages 3 ∶ SM → RF1 →

RF3 → CC

SCC Scheduling Problem: Parameters

Charge

- Required refining stages (route), Proc. time on each machine
- Max waiting time, Due date (at the last stage)

SCC Scheduling Problem: Parameters

- Cast: a sequence of charges
 - Setup time at the last stage before processing the first charge

SCC Scheduling Problem: Variables

- Machine assignment
- Completion time

5

6

2

Casts:

SCC Scheduling Problem: Objective

- •To minimize
 - Cast breaks
 - Total waiting time (between stages)
 - Total earliness
 - Total tardiness

SCC Scheduling Problem: Constraints

•Constraints

- •At most one charge at a time in each machine
- CC stage
 - •One CC machine for all charges in a cast
 - •No idle time in a cast in the CC stage
- Maximum waiting time (between stages)

Contribution to the Literature

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					ioatir			Cond	maint		D	lata	Method	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				Objectives			Constraints ++			Data		Method		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					le [‡]		me		ŧ	me				~
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		•*			tin	÷;	-3	tes	ity.	÷				sec
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		dß			n	Ē	ng	no	Ε	ole	ges	S	_	t (
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		B	£		etic	т 60	ait	h r	ifo	llal	sta	lar	l q	i i i
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		olei	8	ŧ	pld	Ë	×	Ö	5	tro	Ē.	c,	ji ji	e
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		rof	a-0	5	HO	/ait	<u>a</u>	iff.	Q	OU	E E	lax	<u> </u>	<u>n</u>
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			0		Ö		2	Р		Ö				
	0 ()			Ch		W								
Xuan and Tang (2007) I W W W V P I 12 LR 623 Atighehchian, Bijari, and Tarkesh (2019) I M S O R I 108 ACO+NLP 300 Ban et al. (2013) I Ca S O O R 4 7 Heu - Tang, Zhao, and Liu (2014) R M S O O P A 2 100 DE 60 Mao et al. (2014b) I O Ca S S O P A 2 120 LR 116 Mao et al. (2014b) I O Ca S V P 3 40 LR 76 Mao et al. (2015) I O Ca S O P 2 100 DE+VNS 400 Jiang et al. (2015) I O Ca S O P 2 100 DE+VNS 400 Jiang et al. (2016) R O Ca S O														
Atighehchian, Bijari, and Tarkes (2009) I M S O R I 108 ACO+NLP 300 Pan et al. (2013) I O Ca S $-$ P 1 100 ABC 30 Sun and Wang (2013) I Ca S O O R 4 7 Heu - Tang, Zhao, and Liu (2014) R O CS S O P A 3 100 DE 60 Mao et al. (2014) I O Ca S O P A 2 120 LR 116 Li et al. (2014) I O Ca S $-$ P 3 40 LR 176 Sbihi, Bellabdaoui, and Teghem (2014) I O Ca S $-$ P 3 120 FOA 20 Jiang et al. (2015) I O Ca S $-$ P 4 1 100 DE+VNS 400 Li pan. and Mao (2016) R O Ca S			0				0			\mathbf{C}			1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
Sun and Wang (2013) I Ca S O O R 4 7 Heu - Tang, Zhao, and Liu (2014) R M S O O P A 3 100 DE 60 Mao et al. (2014b) R O Ca S S O P A 2 120 LR 116 Mao et al. (2014) I O Ca S - P 3 40 LR 176 Li et al. (2014) I O Ca S O R C 3 49 MIP ∞ Sbihi, Bellabdaoui, and Teghem (2014) I O S W O P 2 120 LR 54 Hao et al. (2015) I O Ca S O P 2 100 DE+VNS 400 Li, Pan, and Mao (2016) I O Ca S O P A 120 DE 54 Long et al. (2016) I O Ch S <td>Atighehchian, Bijari, and Tarkesh (2009)</td> <td></td> <td></td> <td></td> <td>Μ</td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Atighehchian, Bijari, and Tarkesh (2009)				Μ		0							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			0	Ca										30
Mao et al. (2014a) R O S S O P A 2 120 LR 116 Mao et al. (2014b) I O Ca S P 3 40 LR 176 Li et al. (2014) I O Ca S P 3 40 LR 176 Sbihi, Bellabdaoui, and Teghem (2014) I O Ca S P 2 3 49 MIP ∞ Mao et al. (2015) I O S W P 2 100 DE+VNS 400 Jiang et al. (2015) I O Ca S O P C 2 100 DE+VNS 400 Li, Pan, and Mao (2016) R O Ca S O P C 2 - GA+LP 400 Jiang et al. (2016) I O Ch S S O P Z 2 IR 60 Jiang, Liu, and Hao (2017) I O Ca S O P	Sun and Wang (2013)	Ι		Ca								7	Heu	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Tang, Zhao, and Liu (2014)	\mathbf{R}					0			Α		100	DE	60
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mao et al. (2014a)	\mathbf{R}			\mathbf{S}			0		Α		120	LR	116
Sbihi, Bellabdaoui, and Teghem (2014) I O S O R C 3 49 MIP ∞ Mao et al. (2015) I O S W P 2 120 LR 54 Hao et al. (2015) I O Ca S O P 1 900 PSO 150 Jiang et al. (2016) R O Ca S O P A 1 120 FOA+IG 100 Pan (2016) I O Ca S O P Z - GA+LP 400 Jiang et al. (2016) I O Ch S O P Z - GA+LP 400 Jiang et al. (2016) I O Ch S O P Z 20 LaR 60 Ucu and Luo (2017) I O Ca S O P 2 20 LR 60 Jiang, Liu, and Hao (2017) R O Ch W P A 2 66	Mao et al. (2014b)	Ι		Ca								40	LR	176
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Ι	0	Ca		\mathbf{S}						120	FOA	20
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sbihi, Bellabdaoui, and Teghem (2014)	Ι	0				0		\mathbf{R}	\mathbf{C}	3	49	MIP	∞
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mao et al. (2015)	Ι	0		\mathbf{S}						2	120	LR	54
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Hao et al. (2015)	Ι				W						900	PSO	150
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Jiang et al. (2015)	Ι	0	Ca		\mathbf{S}		0	Р	\mathbf{C}	2	100	DE+VNS	400
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Li, Pan, and Mao (2016)	\mathbf{R}	0	Ca		\mathbf{S}			Р	Α	1	120	FOA+IG	100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pan (2016)	Ι			Μ	\mathbf{S}			Р		4	180	ABC	54
Yu, Chai, and Tang (2016) R O S O P A 1 30 Heu - Cui and Luo (2017) I O Ca W P 2 20 LR 60 Jiang, Liu, and Hao (2017) I O Ca S O P A 2 20 LR 60 Long, Zheng, and Gao (2017) R O Ch W O P A 2 66 GA+LS 600 Long, Zheng, and Gao (2017) R O Ch W P A 2 40 LR 135 Fazel Zarandi and Dorry (2018) I O M S O P 1 150 CRO 330 Li et al. (2018) I M S O P 1 120 ABC 100 Long et al. (2018a) I M S O P A 5 104 GA - Long et al. (2018b) I O M S O P A	Long et al. (2016)	Ι	0	Ch		\mathbf{S}		0	Р		2	-	GA+LP	400
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Jiang et al. (2016)	Ι	0		S	\mathbf{S}		0	Р	\mathbf{C}	2	150	Heu	30
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Yu, Chai, and Tang (2016)	\mathbf{R}	0			\mathbf{S}		0	Р	Α	1	30	Heu	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cui and Luo (2017)	Ι	0	Ca		W			Р		2	20	LR	60
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Jiang, Liu, and Hao (2017)	Ι	0	Ca		\mathbf{S}		0	Р		2	120	GA+LS	600
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Long, Zheng, and Gao (2017)	\mathbf{R}	0	Ch		W		0	Р	Α	2	66	GA+VNS	250
	Sun et al. (2017)	\mathbf{R}	0	Ch		W			Р	Α	2	40	LR	135
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fazel Zarandi and Dorry (2018)	Ι	0		Μ	\mathbf{S}	0		Р		1	61	PSO+LP	300
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Jiang, Zheng, and Liu (2018)	Ι				\mathbf{S}	0		Р		1	150	CRO	330
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Li et al. (2018)	Ι			Μ				Р		1	120	ABC	100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Long et al. (2018a)	Ι				S		0	Р	Α	5	104	GA	-
	Long et al. (2018b)	Ι	0		Μ	\mathbf{S}		0	Р	Α	5	140	GA	450
Cui, Luo, and Wang (2020) I O Ca W P 1 45 LR 150 Peng et al. (2020) R O Ca S P 1 120 ICA+LS 30 Han et al. (2021) I W W O P 3 62 LR 1200	Peng et al. (2018)	\mathbf{R}	0	Ca		\mathbf{S}			Р	Α	1	240	ABC	10
Peng et al. (2020) R O Ca S P 1 120 ICA+LS 30 Han et al. (2021) I W W O P 3 62 LR 1200	Sbihi and Chemangui (2018)	Ι	0		Μ		0		\mathbf{R}	\mathbf{C}	1	49	GA+LP	1800
Peng et al. (2020) R O Ca S P 1 120 ICA+LS 30 Han et al. (2021) I W W O P 3 62 LR 1200			0	Ca		W					1	45		
Han et al. (2021) I W W O P 3 62 LR 1200		\mathbf{R}	0			\mathbf{S}			Р		1	120		
		Ι			W			0	Р		3	62		
		Ι		Ch			0	0	R			36	IG+MIP	600

Contribution to the Literature34 papers in 2002- 2021

Author (year) Tang et al. (2002)Pacciarelli and Pranzo (2004) Bellabdaoui and Teghem (2006) Xuan and Tang (2007) Atighehchian, Bijari, and Tarkesh (2009) Pan et al. (2013) Sun and Wang (2013)Tang, Zhao, and Liu (2014) Mao et al. (2014a)Mao et al. (2014b)Li et al. (2014) Sbihi, Bellabdaoui, and Teghem (2014) Mao et al. (2015)Hao et al. (2015)Jiang et al. (2015)

Li, Pan, and Mao (2016)Pan (2016) Long et al. (2016)Jiang et al. (2016)Yu, Chai, and Tang (2016) Cui and Luo (2017)Jiang, Liu, and Hao (2017) Long, Zheng, and Gao (2017) Sun et al. (2017)Fazel Zarandi and Dorry (2018) Jiang, Zheng, and Liu (2018) Li et al. (2018) Long et al. (2018a)Long et al. (2018b)Peng et al. (2018)Sbihi and Chemangui (2018) Cui, Luo, and Wang (2020) Peng et al. (2020)Han et al. (2021)This paper (2021)

Contribution to the Literature

•5 Categories for analysis

Assumption	F	roblem	Experiment				
	Objectives	Constraints	Data	Method			
Problem type* Ca-CC fix	$E\&T^{\dagger}$ Completion time [‡] Woiting time [‡]		# RF stages Max charges	Algorithm Time limit (sec)			

Contribution to the Literature: Assumption

•Problem Type

- Initial schedule
- Reschedule

•Ca-CC fix:

 The assignment of cast – the machine in CC stage is given

Contribution to the Literature: Assumption

- Problem Type
 - Initial schedule
 - Reschedule

- In this paper
- Problem Type
 - Initial schedule
 - Reschedule

- •Ca-CC fix:
 - The assignment of cast the machine in CC stage is given

- •Ca-CC fix:
 - The assignment of cast the machine in CC stage is given

Contribution to the Literature: Problem & Experiment

Objectives

- E&T (Charge, Cast)
- •Completion time $(C_{\max}, \Sigma C_j)$
- Waiting time (Max, Sum)

Constraints

- Max waiting time
- Diff. Ch routes
- MC uniformity
- Controllable time

•Data

- ■# RF stages (1-5)
- Max charges (7-900)

Method

- ■Algorithm
- Time limit (sec)

In this paper

Objectives

E&T (Charge)
Completion time
Waiting time (Sum)

•Constraints

- Max waiting time
- Diff. Ch routes
- MC uniformity (unrelated)
- -Controllable time

•Data

RF stages (3)Max charges (36)

Method

Algorithm: IG+MIPTime limit (600 sec)

Contribution to the Literature

- •Combination of practical elements that makes the problem hard
 - Charges w/ different routes
 (5/34 w/ # of RF stages ≥3)
 - Maximum waiting time constraints
 - Minimizing Total waiting time (5/34 w/ waiting time as both objective and constraints)
 - Minimizing Total earliness & Total tardiness (4/34 w/ Charge level E/T)

Notation: Parameters

- \mathcal{S} The sequence of all stages, $\mathcal{S} = \{1, 2, ..., l, ..., L\}$ where L is the last stage for CC
- J The set of all casts, $J = \{1, 2, ..., j, ..., m\}$ where m is the number of casts
- $\Omega \qquad \text{The set of all charges, } \Omega = \{1, 2, ..., k, ..., n\}$ where n is the number of charges
- $$\begin{split} \Omega_j & \quad \text{The sequence of charges in cast } j, \, \Omega_j := \{\Omega_j[1], \Omega_j[2], ..., \Omega_j[n_j]\} \\ & \quad \text{where } n_j \text{ is the number of charges in cast } j \ (\forall j \in J) \end{split}$$
- $\hat{\Omega}_{j} \qquad \text{The set of pairs of two consecutive charges in cast } j,$ $\hat{\Omega}_{j} := \{ (\Omega_{j}[\kappa], \Omega_{j}[\kappa+1]) : \kappa \in \{1, 2, \dots, n_{j}-1\} \} \ (\forall j \in J)$

Notation: Parameters

 \mathcal{S}_k The sequence of stages in charge k's route,

 $\mathcal{S}_k := \{\mathcal{S}_k[1], \mathcal{S}_k[2], ..., \mathcal{S}_k[c_k]\}$

where c_k is the number of stages in charge k's route $(\forall k \in \Omega)$ and $\mathcal{S}_k[1] = 1, \mathcal{S}_k[c_k] = L$

- $\hat{\mathcal{S}}_k \qquad \text{The set of pairs of two consecutive stages in the route of charge } k, \\ \hat{\mathcal{S}}_k := \{ (\mathcal{S}_k[\rho], \mathcal{S}_k[\rho+1]) : \rho \in \{1, 2, ..., c_k 1\} \} \; (\forall k \in \Omega) \end{cases}$
- M_l The set of machines at stage $l \ (\forall l \in S)$
- p_{ik} The processing time of charge k on machine $i \ (\forall k \in \Omega, i \in \bigcup_{l \in S_k} M_l)$
- $\tau_{ii'}$ The transportation time from machine *i* to *i'* $(\forall i, i' \in \bigcup_{l \in S} M_l)$

Notation: Parameters

The earliest release time of charge k at stage l given as r_{kl} $r_{k1} := 0 \text{ and } r_{kl'} := r_{kl} + \min_{i \in M_l, i' \in M_{l'}} \{ p_{ik} + \tau_{ii'} \}$ $(\forall k \in \Omega, (l, l') \in \hat{\mathcal{S}}_k)$ The setup time of cast j on machine i at the last stage s_{ij} $(\forall j \in J, i \in M_L)$ The due date of charge k at the last stage $(\forall k \in \Omega)$ d_k $W_{\rm max}$ The maximum waiting time Coefficients of penalty for $\pi_1 - \pi_4$ (cast break / waiting time / earliness / tardiness) A sufficiently large number Q

Notation: Variables

 $X_{kk'l}$ 1 if charge k precedes charge k' on the same machine at stage l, and precedence variable 0 otherwise $\forall k, k' \in \Omega, k \neq k', l \in \mathcal{S}_k \cap \mathcal{S}_{k'}$ Y_{ikl} 1 if charge k at stage l is assigned to machine i, and assignment variable 0 otherwise $\forall k \in \Omega, l \in \mathcal{S}_k, i \in M_l$ The completion time of charge k at stage $l \ \forall k \in \Omega, \ l \in \mathcal{S}_k$ The idle time between charge k and its following charge $U_k > 0 \rightarrow \text{cast break}$ at the last stage $\forall k \in \Omega \setminus \bigcup_{i \in J} \{\Omega_i[n_i]\}$ W_{kl} The waiting time of charge kWaiting time between stage l and the next stage l' in its route $\forall k \in \Omega, (l, l') \in \hat{\mathcal{S}}_k$

The earliness /tardiness of charge $k \forall k \in \Omega$ Earliness / Tardiness

 C_{kl}

 U_k

Subject to

$\sum_{i \in M_l} Y_{ikl} = 1$	$\forall k \in \Omega, l \in \mathcal{S}_k$	(2)
$X_{kk'l} + X_{k'kl} \ge Y_{ikl} + Y_{ik'l} - 1$	$\forall k, k' \in \Omega, k < k', l \in \mathcal{S}_k \cap \mathcal{S}_{k'}, i \in M_l$	(3)
$X_{kk'l} + X_{k'kl} \le 1 - (Y_{ikl} - Y_{ik'l})$	$\forall k, k' \in \Omega, k \neq k', l \in \mathcal{S}_k \cap \mathcal{S}_{k'}, i \in M_l$	(4)
$Y_{ikL} = Y_{ik'L}$	$\forall j \in J, (k, k') \in \hat{\Omega}_j, i \in M_L$	(5)
$X_{kk'L} = 1$	$\forall j \in J, (k, k') \in \hat{\Omega}_j$	(6)

Subject to

$$C_{kl} \ge r_{kl} + p_{ik} \cdot Y_{ikl} \qquad \forall k \in \Omega, l \in \mathcal{S}_k, i \in M_l$$

$$\tag{7}$$

$$C_{k'l} - C_{kl} \ge p_{ik'} - Q(2 - Y_{ikl} - Y_{ik'l} + X_{k'kl})$$

$$\forall k, k' \in \Omega, \ k \neq k', l \in \mathcal{S}_k \cap \mathcal{S}_{k'}, i \in M_l$$
(8)

$$C_{k'L} - C_{kL} \ge (p_{ik'} + s_{ij'}) - Q(2 - Y_{ikL} - Y_{ik'L} + X_{k'kL})$$

$$\forall j, j' \in J, \ j \neq j', i \in M_L, (k, k') = (\Omega_j[n_j], \Omega_{j'}[1])$$
(9)

$$C_{kl'} - (C_{kl} + W_{kl}) \ge (\tau_{ii'} + p_{i'k}) - Q(2 - Y_{ikl} - Y_{i'kl'})$$

$$\forall k \in \Omega, (l, l') \in \hat{S}_k, i \in M_l, i' \in M_{l'}$$
(10)

 $C_{kl'} - (C_{kl} + W_{kl}) \le (\tau_{ii'} + p_{i'k}) + Q(2 - Y_{ikl} - Y_{i'kl'})$ (11)

 $\forall k \in \Omega, (l, l') \in \hat{\mathcal{S}}_k, i \in M_l, i' \in M_{l'}$

Subject to $U_k - (C_{k'L} - C_{kL} - p_{ik'}) \ge -Q(1 - Y_{ik'L})$ (12)(13) $T_k - E_k = C_{kL} - d_k$ $\forall k \in \Omega$ $W_{kl} \leq W_{\max}$ $\forall k \in \Omega, l \in \mathcal{S}_k \setminus \{L\}$ (14) $X_{kk'l} \in \{0,1\}$ $\forall k, k' \in \Omega, k \neq k', l \in \mathcal{S}_k \cap \mathcal{S}_{k'}$ (15) $Y_{ikl} \in \{0, 1\}$ $\forall k \in \Omega, l \in \mathcal{S}_k, i \in M_l$ (16) $\forall k \in \Omega, l \in \mathcal{S}_k$ (17) $C_{kl} \geq 0$ $W_{kl} \ge 0$ $\forall k \in \Omega, l \in \mathcal{S}_k \setminus \{L\}$ (18) $U_k \geq 0$ $\forall k \in \Omega \setminus \bigcup_{j \in J} \{\Omega_j[n_j]\}$ (19) $E_{k}, T_{k} > 0$ $\forall k \in \Omega$ (20)

Iterated Greedy Matheuristic

Overview

Lower Bounds

■Consider a subproblem with a single cast (i.e., MIP({j}) $j \in J$). ■Let σ_j be the optimal solution of MIP({j}) .

•Valid LBs: (assuming no cask breaks in $MIP(\{j\})$)

$$\pi_2 \cdot \sum_{k \in \Omega_j} \sum_{\rho=1}^{c_k-1} W_{k, \mathcal{S}_k[\rho]} + \pi_3 \cdot \sum_{k \in \Omega_j} E_k + \pi_4 \cdot \sum_{k \in \Omega_j} T_k \ge Z(\sigma_j)$$

Let S_j^{*}(σ_j) be a desired starting time for cast j at CC stage.
Sort the casts in a non-decreasing order of S_j^{*}(σ_j) for the algorithm.

Overview

•Initial heuristic (IH)

- •On the empty schedule,
- •we put one cast at a time
- while preserving the former schedule
 - machine assignment of charge
 - precedence relationship between charges

➤to achieve a good initial schedule

Overview

Destruction & Construction (DC)

- •We select some charges to be rearranged
 - •DC cast (DA): charges in a cast
 - •DC charge (DH): charges in similar period
- We rearrange selected charges by solving an MIP model
 - •which is smaller than an MIP model describing the whole problem

➤ to find a better schedule

Overview

•IGM: Iterated Greedy Matheuristic

$|H \rightarrow n * [DA \rightarrow DH] \rightarrow MI (MIP improvement)$

Initial HeuristicCast sequence:123456789

- while preserving the former schedule
 - machine assignment of charge
 - precedence relationship between charges

DC CastCast sequence:123456789

- while preserving the other charges' schedule
 - machine assignment of charge
 - precedence relationship between charges

DC ChargeCast sequence:123456789

- •while preserving the other charges' schedule
 - machine assignment of charge
 - precedence relationship between charges

Notation for the Heuristic

MIP(J') The MIP with restricted set of casts $J' \subseteq J$ (e.g., MIP(J) denotes the master MIP.)

 σ A partial or feasible schedule of MIP(J) $Z(\sigma)$ The obj. value of σ to a MIP (sub)problem $^{(}\cdot)^{\sigma}$ The value of a variable determined by
solution σ $S_j^*(\sigma)$ The starting time of cast j in CC stage of
solution σ

Notation for the Heuristic

- \mathcal{P}^X The set of all precedence variables
- \mathcal{A}^{Y} The set of all machine assignment variables
- X(or Y) A variable in \mathcal{P}^X (or \mathcal{A}^Y)
- C^{fix} A set of constraints that fix the values of particular X and Y variables
- C^{LB}A set of lower bound constraints for the
objective terms in the master MIP
- V^X (or V^Y) A set of X(or Y) variables that are not fixed during an iteration

Notation for the Heuristic

- \overline{T} A time limit for a MIP subproblem
- *R* The number of repeated runs of a heuristic

$\langle \sigma, C, \overline{T} \rangle$ Control parameters in solving a MIP subproblem;

- σ : a partial or a feasible incumbent solution ($^{\varnothing}$ if not available),
- $\ensuremath{\mathcal{C}}$: a set of additional constraints, and
- \overline{T} : a time limit

Algorithm

Algorithm 1: Lower bound computation (LC).

Input : A set of casts J

Output: C^{LB} , a rearranged sequence of casts J'

begin

 $\begin{array}{c} \mathcal{C}^{\mathrm{LB}} \leftarrow \varnothing;\\ \mathbf{for} \quad j \; \mathbf{in} \; J \; \mathbf{do}\\ & \left[\begin{array}{c} \sigma_j \leftarrow \mathrm{Solve} \; \mathrm{MIP}(\{j\});\\ \mathcal{C}^{\mathrm{LB}} \leftarrow \mathcal{C}^{\mathrm{LB}} \cup \{\mathrm{Eq.}(21)\} \end{array}\right] \xrightarrow{\pi_2 \cdot \sum_{k \in \Omega_j} \sum_{\rho=1}^{c_k-1} W_{k,\mathcal{S}_k[\rho]} + \pi_3 \cdot \sum_{k \in \Omega_j} E_k + \pi_4 \cdot \sum_{k \in \Omega_j} T_k \geq Z(\sigma_j) \\ J' \leftarrow \mathrm{Sort} \; J \; \mathrm{according} \; \mathrm{to} \; \mathrm{the} \; \mathrm{non-decreasing} \; \mathrm{order} \; \mathrm{of} \; S_j^*(\sigma_j) \; \mathrm{for} \; j \in J;\\ \mathbf{return} \; \mathcal{C}^{\mathrm{LB}}, J' \end{array}$

Algorithm

Algorithm 2: Initial heuristic (IH).

Input : A sorted list of casts J, a time limit \overline{T}^{IH}

Output: A feasible solution σ of the master MIP

begin

$$\begin{array}{l} \mathcal{C}^{\mathrm{fix}} \leftarrow \varnothing, \Omega^{\mathrm{fix}} \leftarrow \varnothing; \\ \mathbf{for} \ j \ \mathbf{in} \ J \ \mathbf{do} \\ & \left[\begin{array}{c} \sigma \leftarrow \left\{ \mathrm{Solve} \ \mathrm{MIP}(\{1, \ldots, j\}) \ \mathrm{with} \ \langle \varnothing, \mathcal{C}^{\mathrm{fix}}, \overline{T}^{\mathrm{IH}} \rangle; \right\} \\ \mathbf{for} \ \overline{X} \ \mathbf{in} \ \{\overline{X}_{kk'l}, \overline{X}_{k'kl} : k \in \Omega_j, k' \in \Omega^{\mathrm{fix}} \cup \Omega_j \setminus \{k\}, l \in \mathcal{S}_k \cap \mathcal{S}_{k'} \} \ \mathbf{do} \\ & \left[\begin{array}{c} \mathcal{C}^{\mathrm{fix}} \leftarrow \mathcal{C}^{\mathrm{fix}} \cup \{X = \hat{X}^{\sigma}\}; \\ \mathbf{for} \ Y \ \mathbf{in} \ \{Y_{ikl} : k \in \Omega_j, l \in \mathcal{S}_k, i \in M_l \} \ \mathbf{do} \\ & \left[\begin{array}{c} \mathcal{C}^{\mathrm{fix}} \leftarrow \mathcal{C}^{\mathrm{fix}} \cup \{Y = \hat{Y}^{\sigma}\}; \\ \Omega^{\mathrm{fix}} \leftarrow \Omega^{\mathrm{fix}} \cup \Omega_j; \end{array} \right] \end{array} \right. \end{array}$$

return σ

Algorithm

Algorithm 3: DC-cast (DA).

```
Input : A feasible solution \sigma, C^{\text{LB}}, \overline{T}^{\text{DA}}
```

```
Output: An improved solution \sigma^*
```

begin

```
Sort J in the non-decreasing order of S_j^*(\sigma);

\sigma^* \leftarrow \sigma;

for j in J do

V^X \leftarrow \{X_{kk'l}, X_{k'kl} : k \in \Omega_j, k' \in \Omega \setminus \{k\}, l \in \mathcal{S}_k \cap \mathcal{S}_{k'}\};

V^Y \leftarrow \{Y_{ikl} : k \in \Omega_j, l \in \mathcal{S}_k, i \in M_l\};

\mathcal{C}^{\text{fix}} \leftarrow \{X = \hat{X}^{\sigma^*} : X \in \mathcal{P}^X \setminus V^X\} \cup \{Y = \hat{Y}^{\sigma^*} : Y \in \mathcal{A}^Y \setminus V^Y\};

\sigma^* \leftarrow \text{Solve MIP}(J) \text{ with } \langle \sigma^*, \mathcal{C}^{\text{fix}} \cup \mathcal{C}^{\text{LB}}, \overline{T}^{\text{DA}} \rangle;

return \sigma^*
```

Algorithm

Algorithm 4: DC-charge (DH).

Input : A feasible solution σ , D, Δ , C^{LB} , \overline{T}^{DH}

Output: An improved solution σ^*

begin

 $\delta \leftarrow \delta(\sigma)$ by (22); for l in S do $\begin{bmatrix} t_l^s, t_l^e \end{bmatrix} \leftarrow \begin{bmatrix} \bar{S}_1(\sigma) + (l-1)\delta, \bar{S}_1(\sigma) + (l-1)\delta + D \end{bmatrix};$ $\sigma^* \leftarrow \sigma$: while $\exists l \in S$ such that $t_l^s \leq \overline{C}_l(\sigma^*)$ do $\Omega^D \leftarrow \{k : k \in \Omega, \exists l \in \mathcal{S}_k \text{ such that } \hat{C}_{kl}^{\sigma^*} \in [t_l^s, t_l^e]\};$ $V^X \leftarrow \{X_{kk'l}, X_{k'kl} : k \in \Omega^D, k' \in \Omega \setminus \{k\}, l \in \mathcal{S}_k \cap \mathcal{S}_{k'}\};$ $V^Y \leftarrow \{Y_{ikl} : k \in \Omega^D, l \in \mathcal{S}_k, i \in M_l\};$ $\mathcal{C}^{\text{fix}} \leftarrow \{ X = \hat{X}^{\sigma^*} : X \in \mathcal{P}^X \setminus V^X \} \cup \{ Y = \hat{Y}^{\sigma^*} : Y \in \mathcal{A}^Y \setminus V^Y \};$ $\sigma^* \leftarrow \text{Solve MIP}(J) \text{ with } \langle \sigma^*, \, \mathcal{C}^{\text{fix}} \cup \mathcal{C}^{\text{LB}}, \, \overline{T}^{\text{DH}} \rangle;$ for l in S do ---- $\begin{bmatrix} t_l^s, t_l^e \end{bmatrix} \leftarrow [t_l^s + \Delta, t_l^e + \Delta];$ return σ^*

Algorithm

Algorithm 5: Iterated greedy matheuristic (IGM).

```
Input : J, \overline{T}^{\text{IH}}, R^{\text{DC}}, R^{\text{DA}}, \overline{T}^{\text{DA}}, R^{\text{DH}}, \overline{T}^{\text{DH}}, D, \Delta, \overline{T}^{\text{IGM}}
```

Output: A feasible solution σ

begin

 $\begin{array}{lll} \mathcal{C}^{\mathrm{LB}}, J' \leftarrow \mathrm{LC}(J); & \text{LB Computation} \\ \sigma \leftarrow \mathrm{IH}(J', \overline{T}^{\mathrm{IH}}); & \text{Initial Heuristic} \\ \textbf{repeat } R^{\mathrm{DC}} \textbf{ times} & & & \\ & & \text{DC Cast} \\ \textbf{repeat } R^{\mathrm{DA}} \textbf{ times } \sigma \leftarrow \mathrm{DA}(\sigma, \mathcal{C}^{\mathrm{LB}}, \overline{T}^{\mathrm{DA}}) & \textbf{until } \textit{not improved}; \\ \textbf{repeat } R^{\mathrm{DH}} \textbf{ times } \sigma \leftarrow \mathrm{DH}(\sigma, D, \Delta, \mathcal{C}^{\mathrm{LB}}, \overline{T}^{\mathrm{DH}}) & \textbf{until } \textit{not improved}; \\ \textbf{until } \textit{not improved} & & \\ \sigma \leftarrow \mathrm{MI}(\sigma, \mathcal{C}^{\mathrm{LB}}, \overline{T}^{\mathrm{IGM}} - \mathrm{Elapsed time}); \end{array}$

return σ

Test Data Summary

- •Random processing times
 - ■SM: 45~55 min
 - ■RF: 30~40 min
 - ■CC: 35~45 min

•Transportation time:

 10 min between all machines

Maximum waiting time:30 min

- •Random routing
 - Each charge has a 2/3 probability of skipping each RF stage

Test Data Summary

- Three problem sizes
 small: 2~3 casts, 6~12 charges
 medium: 3~4 casts, 15~24 charges
 practical: 4~7 casts, 30~36 charges
- •Total 90 problem instances
 - 30 small-sized problems
 - •30 medium-sized problems
 - •30 practical-sized problems

Algorithm Parameters

- •For IH,
 - • $\overline{T}^{\text{IH}} = 60 \text{ sec.}$

•For DC,
•
$$R^{DC} = 4$$
, $R^{DA} = 2$, $R^{DH} = 1$
• $\overline{T}^{DA} = 60 \sec$, $\overline{T}^{DH} = 60 \sec$, $D = 90 \min$, $\Delta = 45 \min$.

•For IGM,

Compared algorithms

- •Iterated greedy matheuristic (IGM) \rightarrow 10 minutes
- Solving the whole MIP model (MIP)NSGA-II
- •Simple genetic algorithm (GA)

 \rightarrow 20 minutes

The average optimality gaps

Example: obj. value and LB over time on a practical size

Avg. performance of IGM on practical size problems

Conclusion

- •We consider a practical steelmaking-continuous casting scheduling problem.
- •We establish a general Mixed Integer Program (MIP).
- •We propose an **iterated greedy matheuristic (IGM)**, utilizing **MIP** and **it subproblems**.
- •IGM performs very well on all different sizes.

Conclusion

- •IGM may be applied to various problems since it uses a MIP and its subproblems.
- •Practical hybrid flowshop scheduling problems considering:
 - sequence-dependent setup times
 - •precedence constraints
 - machine eligibility constraints

•Scheduling problems in more general machine environments (e.g., flexible job shop)

Thank you

Kangbok Lee POSTECH, South Korea