

Scheduling and Energy

Industrial Challenges and Opportunities

Scheduling Seminar - 2022-04-27, liro Harjunkoski

© 2022 Hitachi Energy. All rights reserved.

Source: National Academies of Sciences, Engineering, and Medicine 2021. The Future of Electric Power in the United States. Washington, DC: The National Academies Press. https://doi.org/10.17226/25968.

Hitachi Energy

66
Electricity will
be the backbone
of the entire
energy system

01 Accelerated shift from fossil-based to renewable power generation

02 Growing electrification of Transportation, Industry and Buildings sectors

03 Sustainable energy carriers, complementary to direct electrification

Fast facts

66

Global electrification will be more than 50% of total energy demand

66

Electrification improves energy efficiency

66

All market sectors converting towards electrification

66

Energy sector-coupling beneficial

So what?

Digital and energy platforms are needed...

...to manage the enormous power system energy transition challenges:

increased complexity additional capacity

for reduction of CO₂ emissions

Accelerating the transition to a carbon-neutral energy system requires adapting and adopting policies and regulations to enable technology and new business models to support Scalable, Flexible and Secure energy systems

Public © 2022 Hitachi Energy. All rights reserved.

- Highlight the importance of energy / electricity
- Give insights to solving industrial-scale scheduling problems (demand-side management)
- Present some strategies to speed up largescale optimization problems
- Share some personal experiences from working with MILP problems
 - Melt-shop (steel) scheduling
 - Unit Commitment

MILP is an important (although not only) component in solving industrial scheduling problems

HITACHI Inspire the Next

Outline of the Talk

- 1. Why MILP?
- 2. Demand-side Management Short Introduction
- 3. Steel Production Scheduling (continuous-time)
- 4. Unit Commitment Problem (discrete-time)
- 5. Conclusions

Why MILP?

Several Optimization Layers – Potential of Conflicting Actions

Hitachi Energy

Public7 © 2022 Hitachi Energy. All rights reserved.

Why MILP?

HITACHI Inspire the Next

MILP models are flexible and "elastic"

- Consider physical and business constraints
- No adaptation to old model needed when adding new constraints
- Commercial solvers benefit from top OR achievements
- Separate modeling experts and software developers
- Scheduling only one part of automation systems

8

Demand-side Management

Short Introduction

Volatile energy prices

Renewable generation

source: dena – Integration EE

Consumption & generation

Covering consumption peaks

Market liberalization

Grid availability and stability

Demand side management offers benefits in new market environment

Using process flexibility for iDSM

Shifting loads of energy intensive process steps to lowcost times

Reduce critical load of power grids

iDSM allows important cost savings

Scheduling of Energy-Intensive Processes

Public 12 © 2022 Hitachi Energy. All rights reserved.

Steel Production Scheduling Continuous Time

Public 13 © 2022 Hitachi Energy. All rights reserved.

From scrap to steel

Step 1: Electric Arc Furnace (EAF)

- The largest electricity consumer
- Done in batches (called heats)

Steps 2-3: Adapt the chemical properties

- Argon-oxygen decarburization (AOD)
- Ladle Furnace (LF)

15

Step 4: Continuous Casting (CC)

• Cast multiple heats without interruption

Electricity-intensive process with many constraints

- Avoid intermediate cooling (quality problems)
- Sequence-dependent changeovers
- Grade incompatibilities
- Transfer times between equipment
- Coordination of production steps

@Hitachi Energy

Inspire the Next

Optimization step I – Grouping and Scheduling

OHITACHI Energy

Public © 2022 Hitachi Energy. All rights reserved.

16

Public 17 © 2022 Hitachi Energy. All rights reserved. Source: Harjunkoski, I., & Grossmann, I. E. (2001). A decomposition approach for the scheduling of a steel plant production. Computers and Chemical Engineering, 25(11-12), 1647-1660

Volatile Prices as Opportunity

Public 18 © 2022 Hitachi Energy. All rights reserved.

Volatile Prices as Opportunity

Enable energy-intensive industry to

- Participate in future energy markets (virtual power plant)
- Actively support grid stability and reliability

Use process flexibility to intelligently schedule the production in order to

- Lower energy cost
- Efficiently manage resources

 $x_{ijs} = 1$ if batch *i* is processed in unit *j* on stage *s* (stage-based assignment)

CONTINUOUS VARIABLES

 t_{is}^{s} = start time of batch *i* on stage *s* t_{is}^{f} = end time of batch *i* on stage *s* Can be easily generalized to multistage processes and to several resources

HITACHI Inspire the Next

(Méndez and Cerdá, 2003)

$$\sum_{j \in J_{is}} x_{ijs} = 1 \quad \forall i \in I, s \in S_i$$

$$t_{is}^{f} = t_{is}^{s} + \sum_{j \in J_{is}} T_{ijs} x_{ijs} \quad \forall i \in I, s \in S_{i}$$

$$\begin{aligned} t_{i's'}^s &\geq t_{is}^f + T_{is,i's'}^{clean} + T_{i's'}^{setup} \\ &\forall i,i' \in I, i < i', s \in S_i, s' \in S_{i'}, j \in J_{is,i's'} \end{aligned}$$

ALLOCATION CONSTRAINT

PROCESSING TIME

Sets

$$S_i = \text{stages needed for job } i$$

 $J_{is} = \text{units that can execute}$
 $\text{stage } s \text{ for job } i$
 $J_{is \, is is i} \in J_{is} \cap J_{ius}$

End time = start time + duration (depends on equipment choice)

Sequencing only makes sense for jobs on the same machine

SEQUENCING CONSTRAINTS

 $t_{is}^{s} \ge t_{i's'}^{f} + T_{i's',is}^{clean} + T_{is}^{setup}$ $\forall i, i' \in I | i < i', s \in S_{i}, s' \in S_{i'}, j \in J_{is,i's'}$

$$t_{is}^{s} \ge t_{i,s-1}^{f} + T_{i,s-1,s}^{tr} \quad \forall i \in I, s \in S_{i}, s > 1$$
 STAGE PRECEDENCE

Indices and variables

- i = job
- j = unit or machine
- s = production stage
- x = assignment variable
- y = sequencing variable

Hitachi Energy

Public Source: Ménde 1 © 2022 Hitachi Energy. All rights reserved. Engineering, 2

Source: Méndez, C. A., & Cerdá, J. (2003). Dynamic scheduling in multiproduct batch plants. Computers and Chemical Engineering, 27(8-9), 1247-1259

21

HITACHI **Inspire the Next**

Continuous-time scheduling model Model the relation between tasks *i* and time slots *s* through a discrete time-grid (MILP) Model structure electricity Task *i* contribution to price e_s Event binaries Y electricity Production s_2 – considered denoting start or consumption [min] of scheduling time slot finish of a task e_2 a time slot s $Y_{p,s,i}^{s} = 1, Y_{p,s,i}^{f} = 1$ Energy task $a_{p,s,i,m} = \tau_{p,m}$ S_1 awareness e_1 *S*₃ e_3 Price response $Y_{p,s,i}^{s} = 0, Y_{p,s,i}^{f} = 1$ $b_{p,s,i,m} = t_{p,m}^f - t_1$ task Deviation response task $Y_{p,s,i}^{s} = 1, Y_{p,s,i}^{f} = 0$ $c_{p,s,i,m} = t_2 - t_{p,m}^s$ Image on right $Y_{p,s,i}^s = 0, Y_{p,s,i}^f = 0,$ task $d_{p,s,i,m} = t_2 - t_1$ Production task $\sum_{s'=0}^{s-2} Y_{p,s',i}^s = 1,$ $\sum_{s'=s+1}^{|s|} Y_{p,s',i}^f = 1$ Time spent task task within a time slot time t_1 $t_0 = start$ t_s t_2

Accounting for Electricity Consumption

Public 22 © 2022 Hitachi Energy. All rights reserved. Source: Nolde, K., & Morari, M. (2010). Electrical load tracking scheduling of a steel plant. Computers and Chemical Engineering, 34, 1899-1903; Hadera, H. et al. (2015). Optimization of steel production scheduling with complex timesensitive electricity cost. Computers and Chemical Engineering, 76, 117-136

Optimized Billing Contracts (Contracts) (Contracts)

OHITACHI Energy

ST: stages in the original scheduling formulation *S*: time slots for electricity tracking

$$\begin{split} t_{p,st}^{s} &\geq \tau_{s-1} \cdot Y_{p,st,s}^{s} \quad \forall p \in P, st \in ST, s \in S \\ t_{p,st}^{s} &\leq \tau_{s} + (M - \tau_{s}) \cdot (1 - Y_{p,st,s}^{s}) \quad \forall p \in P, st \in ST, s \in S \\ t_{p,st}^{f} &\geq \tau_{s-1} \cdot Y_{p,st,s}^{f} \quad \forall p \in P, st \in ST, s \in S \\ t_{p,st}^{f} &\leq \tau_{s} + (M - \tau_{s}) \cdot (1 - Y_{p,st,s}^{f}) \quad \forall p \in P, st \in ST, s \in S \end{split}$$

For more information on how to link the auxiliary variables *a*, *b*, *c*, *d* to the scheduling problem, see paper by Hadera et al. (2015)

Intelligent Production Planning

Lower energy costs by

- Utilization of variable pricing
- Keeping committed load profiles

Scenario	Bin	Vars	MIP (600 s)	Gap (600 s)	MIP (3600 s)	Gap (3600 s)
1 (20-hi)	4065	29508	247838	29,30%	241136	26,80%
2 (20-lo)	4065	29508	200038	24,90%	180023	16,10%
3 (16-hi)	3229	23428	155226	22,81%	146339	17,93%
4 (16-lo)	3229	23428	204173	22,50%	180965	12,10%

	Makespan – driven schedule																			
ABB	Gantt Viewer V1.0(d)	Mon 23	Sep 13			6				12					18					Tue 2
🔏 ₍ R)	Isources																			
-	Melt Shop - EAF1		P1	P3	P5	P7	P9	P11	P13	P15	P17		P19							
ł	Melt Shop - EAF2		P2	P4	P6	P8	P10	P12	P14	P16	P18		P20							
ł	Melt Shop - AOD1			P1	P3	P5	P7	P9	P11	P13	P15	P17		P19						
ł	Melt Shop - AOD2			P2	P4	P6	P8	P10	P12	P14	P16	P18		P20)					
ł	Melt Shop - LF1			P	1	P3	P5	P7	P9	1	P13	P15	P17		P19					
ł	Melt Shop - LF2				P2	- P4	P6	P8	P10	P12	P14		P16	P18	P20					
-	Melt Shop - CC1				P1	P2	P3		- P8 - P	P10	P11 P1	12		P17	P18	P19	P20			
l	Melt Shop - CC2						P4	P5	5 P7			P13	P14 P.	15 P16						
El	ectricity prio	ce																		
El	ectricity prio	ce				Ele	ectric	ity cos	– drive	sche	dule								_	
El	ectricity prid	Mon 23	Sep 13			Ele	ectric	ity cos	– drive	sche	dule				18					Tue 2
El	Gantt Viewer V1.0(d)	Mon 23	Sep 13			Ele	ectric	ity cos	– drive	sche 12	dule				18					Tue 2
El	Gantt Viewer V1.0(d) Sources Melt Shop - EAF1	Mon 23	Sep 13	P3	PS	Ele 6	ectric 1	ity cos	– drive	sche 12 P13	dule P15	P17		P19	18					— Tue 2
El	Gantt Viewer V1.0(d) Sources Melt Shop - EAF1 Melt Shop - EAF2	Mon 23	Sep 13 P1 P2	P3	P5 P6	Ele 6 P7 P8	ectric P9 P10	ity cos	– drive	12 P13 P14	dule P15	P17 P16	P1	P19 8	18					Tue 2
El	Gantt Viewer V1.0(d) sources Melt Shop - EAF1 Melt Shop - EAF2 Melt Shop - AOD1	Mon 23	Sep 13 P1 P2	P3 P4 P1	P5 P6 P3	Ele 6 197 198 195	е <i>ctric</i> Р9 Р10	ity cos	– drive	sche 12 P13 P14	dule P15	P17 P16 P15		P19 8 P17	18 P20 P19	9				Tue 2
El ABB	Gantt Viewer V1.0(d) sources Melt Shop - EAF1 Melt Shop - EAF2 Melt Shop - AOD1 Melt Shop - AOD2	Mon 23	Sep 13 P1 P2	P3 P4 P1 P2 0	P5 0 P6 0 P3 0	Ele 6 P7 P8 P5 P6	P9 P10 P7 P8	ity cos P11	- drive	sche 12 P13 P14	dule P15 P13 P13	P17 P16 P15	P10	P19 3 P17	18 P20 P19 P18		P20			Tue 2
El	Gantt Viewer V1.0(d) sources Melt Shop - EAF1 Melt Shop - EAF2 Melt Shop - AOD1 Melt Shop - AOD2 Melt Shop - LF1	Mon 23	Sep 13 P1 P2	P3 0 P4 0 P1 0 P2 0	P5 0 P6 0 P3 0 1 P	Ele 6 P7 P8 P5 P6 3	ectric P9 P10 P7 P8 P5	ity cos P11 P20 P10 P7	- drive	sche 12 P13 P14	dule P15 P13 P1	P17 P16 P15	P16	P19 8 P17 P15	18 P20 P19 P18 P17		P20 P19			Tue 2
El	Gantt Viewer V1.0(d) sources Melt Shop - EAF1 Melt Shop - EAF2 Melt Shop - AOD1 Melt Shop - AOD2 Melt Shop - LF1 Melt Shop - LF2	Mon 23	Sep 13 P1 P2	P3 P4 P1 P2 P	P5 P6 P3 P4 1 P2	Ele 6 P7 P8 P5 P6 3	P9 P10 P7 P8 P5 P6	ity cos P11 P30 P30 P7 P8	- drive	sche 12 P13 P14 P14 P12	dule P15 P13 P13	P17 P16 P15	P13	P19 8 P17 P15 4	18 P20 P19 P18 P17 P16		P20 P19 8		20	Tue 2
El	Gantt Viewer V1.0(d) sources Melt Shop - EAF1 Melt Shop - EAF2 Melt Shop - AOD1 Melt Shop - AOD2 Melt Shop - LF1 Melt Shop - LF2 Melt Shop - CC1	Mon 23	Sep 13 P1 P2	P3 P4 P1 P1 P2 P	Р5 Р6 Р3 Р4 1 Р2 Р1	Ele 6 P7 P8 P5 P5 3 2 4 2	P3 P3 P10 P7 P8 P5 P6 P3	ity cos P11 P3 P10 P7 P8	– drive	sche 12 P13 P14 P14 P14 P12 P10	edule P15 P13 P11 P1	P17 P16 P15 I4	P13	P19 8 P17 P15 4	18 P20 P19 P18 P17 P16)))))))))))))))))))	P20 P19 8 P17	P2 P18	20 P19	- Tue 2*

Hadera et al. (2015), Merkert et al. (2015), Castro et al. (2013)

Benefits of Collaboration: 5% Savings at pilot plant

Discrete-time scheduling model

 $\operatorname{Re}_{r,t} = \operatorname{Re}_{r,t-1} + \sum_{k} \sum_{i} N_{k,i,t} \mu_{r,k,i} + \sum_{k} \sum_{i} N_{k,i,t-\theta_{k,i}} \overline{\mu}_{r,k,i} + \sum_{k} \sum_{i} \sum_{t'=t-\theta_{k,i}+1}^{n} N_{k,i,t'} \xi_{k,i,r} + \pi_{r,t} \forall r,t$ EL EAF1 EL EL AOD1 EL LF1

CC1

Modeling Approach Based on Resource Balances

Integrated Production Planning & Energy Management

Source: Hadera, H. et al. (2015). Optimization of steel production scheduling with complex time-sensitive electricity cost. Computers and Chemical Engineering, 76, 117-136; Hadera, H. et al. (2019). Integration of production scheduling and energy-cost optimization using mean value cross decomposition. Computers and Chemical Engineering, 129, 106436

Power Grids Focus

Different Industrial Processes

Coordination of Energy Production and Consumption is a Very Large Scheduling Problem

Traditional Power System – main concern sufficient electricity availability at each time

Modern Power System – main concerns electricity availability at each time as well as network capacity

Unit Commitment Problem Discrete Time

Public 31 © 2022 Hitachi Energy. All rights reserved.

Electricity Production = Consumption

Ensure that the Electricity Production = Consumption

- Schedule and coordinate electrical generation in order to match the energy demand and supply at minimum cost
- Optimal (lowest cost) balance between the "players" by solving MILP-based models
- Including: Generators, Renewables, Energy storage, Industrial sites, Power markets (buy & sell)
- Ensuring: Demand being met also with strong renewable participation
 - Most economical operations
 - Healthy ramp-up / ramp-down phases
 - Feasible w.r.t. power grid limitations

Mathematical Formulation (5 units, 5 time points) Illustration

Indices	
i	generation unit (I)
t	time slot (T)
Parameters	S
P_t^{dem}	electricity demand at time t (MW)
C_i^{var}	variable generation cost (EUR/MW)
Variables	
$p_{i,t}$	generation level, e.g. in MW (continuous)
Constraints	6
$\sum_i p_{i,t} = P_t^d$	$^{lem} \forall t$
Objective f	unction
$min \sum_t \sum_i C$	$r_i^{var} \cdot p_{i,t}$
Unit allocat	tion can be done based on unit-specific costs (still simple)!
Howeve	er, a unit may be turned on/off… (we need a binary variable)

• Each unit also has a lower and upper operation limits (MW)

Individual Generator Limitations

Parameters

C_i^{fix}	fixed generation cost (EUR/time step)
C_i^{start}	start-up cost of generator (EUR)
C_i^{stop}	shut-down cost of generator (EUR)
L_i^U	minimum uptime (time steps)
L_i^D	minimum downtime (time steps)
ΔP_i^{up}	ramp-up limit (MW/time step)
ΔP_i^{dn}	ramp-down limit (MW/time step)
P_i^{min}	minimum feasible (stable) generation (MW)
P_i^{max}	maximum feasible (stable) generation (MW)
Variables	
$p_{i,t}$	generation level, e.g. in MW (continuous)
n _{i.t}	state of generator <i>i</i> at time <i>t</i> : on/off (binary)

- $n_{i,t}^{start}$ start-up indicator of generator *i* s at time *t* (binary)
 - shut-down indicator of generator *i* at time *t* (binary)

(MW)

Public 34 © 2022 Hitachi Energy. All rights reserved.

 $n_{i,t}^{stop}$

Illustration

Public 35 © 2022 Hitachi Energy. All rights reserved.

+

Problem Size

Number of units significantly increasing (small renewable units, energy storage units, ...)

- Yesterday: 50-200 generation units
- Today: >1000 plannable units
- Future: >5000+ units...

Planning horizon: 24 hours, time grid of 1 hour, 30 or 15 min \rightarrow 24, 48 or 96 time points.

A problem with at least 24000 binary variables (1000 units) → 5.24*10⁷²²⁴ combinations

Any brute force method will fail ...

We need to be able to solve several UC problem runs (iterative procedure) typically within 5-10 minutes!

Optimality

Optimization plays a crucial role as we are often optimizing the power use for an entire country or state Assume

- a typical consumption of 40 GW...
- Average power price 40 EUR/MWh (4 cents / kWh)

This result in a daily generation cost of 38.4 MEUR (in a year 14 billion EUR)

 Each 1% away from the optimal solution means 384 kEUR loss / day (this is still acceptable) → 140 MEUR / year

Optimization matters!!!

Proposed Approach

Basic target: Speed up the solution of the UC problem without loss off (near) optimality!

LP problem much faster than corresponding MILP

 Rounding e.g. fractional values 0.9 → 1 (binary) does not work well!

Idea: Analyze LP solution and fix binary variables for generators respecting the physical generation limits $(P_{gen}^{min}, P_{gen}^{max})$ in the relaxed solution by checking the key equation:

 $n_{i,t} \cdot p_{i,t} \ge P_i^{min}$

If this is satisfied, then the generator operates on a valid region even in the relaxed solution \rightarrow **assume** also needed in MIP \rightarrow fix $n_{it} = 1$

Proposed Approach

Basic target: Speed up the solution of the UC problem without loss off (near) optimality!

LP problem much faster than corresponding MILP

 Rounding e.g. fractional values 0.9 → 1 (binary) does not work well!

Idea: Analyze LP solution and fix binary variables for generators respecting the physical generation limits $(P_{gen}^{min}, P_{gen}^{max})$ in the relaxed solution by checking the key equation:

 $n_{i,t} \cdot p_{i,t} \ge P_i^{min}$

If this is satisfied, then the generator operates on a valid region even in the relaxed solution \rightarrow **assume** also needed in MIP \rightarrow fix $n_{it} = 1$

Test Cases with 1200/50 Units

Results: 1200 units (large example)

- Average speed-up: 3.7
- Longest solution time (critical): 132 → 13 seconds!
- Average solution improvement
 Results: 50 units (small example)
- Average speed-up: 1.8
- Longest solution time: 226 \rightarrow 65s
- In average 0.7% worse solutions
 - One outlier case with 41% (caused by inflexible units)

Many runs: Better than MIP

• All runs: mipgap = 1%

First UC example (1200 units, 44 instances)

Solution times (s)	MIP	LPHeur	FixedVars	Speed-Up	ObjDiff
Min	9.24	7.24	8002	0.944	0.992
Мах	131.99	12.72	10494	13.918	1.004
Average	36.63	9.82	10053	3.731	0.999
Median	25.37	9.76	10086	2.553	0.999
Total (sum)	1611.78	432,00		N/A	N/A

Second UC example (50 units, 225 instances)

Solution times (s)	MIP	LPHeur	FixedVars	Speed-Up	ObjDiff
Min	0.168	0.208	29	0.130	0.994
Мах	226.825	65.418	355	6.093	1.410
Average	9.797	5.154	137	1.863	1.007
Median	1.074	0.565	128	1.515	1.001
Total (sum)	1498.903	788.570	N/A	N/A	N/A

Harjunkoski, I. et al. (2021). Matheuristics for speeding up the solution of the unit commitment problem. Paper presented at the Proceedings of 2021 IEEE PES Innovative Smart Grid Technologies Europe: Smart Grids: Toward a Carbon-Free Future, ISGT Europe 2021

Promising results

A simple approach can make a big difference!

- Increasing the robustness of solving the UC problem
- All instances on the same grid \rightarrow large variations
- Possible to build up on this, combine it with ML etc.
 - Nevertheless, due to strong optimality need and many cost types optimal cost balancing can be challenging
 - Important: enough problem-specific data for training
- Deployment of proposed LP-based heuristic relatively straightforward in an existing product environment
 - Sometimes, relaxed LP-solution took > 50% of total time (done twice in LP-based heuristics)

Conclusions

- Highlight the importance of energy / electricity
- Give insights to solving industrial-scale scheduling problems (demand-side management)
- Present some strategies to speed up largescale optimization problems
- Share some personal experiences from working with MILP problems
 - Melt-shop (steel) scheduling
 - Unit Commitment

MILP is an important (although not only) component in solving industrial scheduling problems

Conclusions

Optimization is critical to many industrial problems

- MILP a good tool, especially for modeling complex constraints
- Commercial MILP solvers embed most advanced algorithms MILP alone not sufficient in solving many real-size problems
- Need supporting heuristics, decomposition schemes, AI/ML, ...
- Models must be both very tight and expandable
- Energy combines different players and becomes more important
- Demand-side management seek to identify process flexibility
- Combination of scheduling processes and energy is hard but necessary: Need more solutions crossing the domain borders!

Important: Research cultures meet and collaborate: Math, CS/OR, Engineers (ChemE, Elec, SW, ...) and Natural Scientists

• Not to forget about industrial/academic collaboration...

Still many industrial challenges not even yet been modeled!

Public © 2022 Hitachi Energy. All rights reserved.

References

- Harjunkoski, I., & Grossmann, I. E. (2001). A decomposition approach for the scheduling of a steel plant production. Computers and Chemical Engineering, 25(11-12), 1647-1660
- Castro, P. M., Harjunkoski, I., & Grossmann, I. E. (2009). New continuous-time scheduling formulation for continuous plants under variable electricity cost. Industrial and Engineering Chemistry Research, 48(14), 6701-6714
- Méndez, C. A., & Cerdá, J. (2003). Dynamic scheduling in multiproduct batch plants. Computers and Chemical Engineering, 27(8-9), 1247-1259
- Hadera, H., Harjunkoski, I., Sand, G., Grossmann, I. E., & Engell, S. (2015). Optimization of steel production scheduling with complex timesensitive electricity cost. Computers and Chemical Engineering, 76, 117-136
- Castro, P. M., Sun, L., & Harjunkoski, I. (2013). Resource-task network formulations for industrial demand side management of a steel plant. Industrial and Engineering Chemistry Research, 52(36), 13046-13058
- Merkert, L., Harjunkoski, I., Isaksson, A., Säynevirta, S., Saarela, A., & Sand, G. (2015). Scheduling and energy industrial challenges and opportunities. Computers and Chemical Engineering, 72, 183-198
- Nolde, K., & Morari, M. (2010). Electrical load tracking scheduling of a steel plant. Computers and Chemical Engineering, 34(11), 1899-1903
- Dua, V., Pistikopoulos, E., 2000, An Algorithm for the Solution of Multiparametric Mixed Integer Linear Programming Problems, Ann Oper Res, 99, 1-4, 123-139
- Hadera, H. et al. (2019). Integration of production scheduling and energy-cost optimization using mean value cross decomposition. Computers and Chemical Engineering, 129, 106436
- Harjunkoski, I. et al. (2021). Matheuristics for speeding up the solution of the unit commitment problem. Paper presented at the Proceedings of 2021 IEEE PES Innovative Smart Grid Technologies Europe: Smart Grids: Toward a Carbon-Free Future, ISGT Europe 2021

HITACHI Inspire the Next