Scheduling Seminar

Scheduling with Machine Learning

hyunjungkim@kaist.ac.kr msslab.kaist.ac.kr

Department of Industrial & Systems Engineering KAIST (Korea Advanced Institute of Science and Technology)

March 1, 2023

Contents

- Scheduling with Machine Learning
- Scheduling for Semiconductor Manufacturing
- Scheduling for Steel Manufacturing
- Scheduling for Insulation Manufacturing
- Other Industrial Scheduling Problems
- Final Remark

Scheduling with Machine Learning

- Scheduling is field of study concerned with optimal allocation of resources, over time, to a set of tasks.
 - Semiconductor/LCD, steel, automotive, battery, biopharmaceutical
- Machine learning approaches are used for scheduling in manufacturing, such as determining weights of dispatching rules, assigning jobs to machines, etc.

Sources: https://spectrum.ieee.org/chips-act-of-2022 https://www.howden.com/en-gb/industries/industrial/metal-processing/steel-making https://inc42.com/buzz/ril-ola-electric-rajesh-exports-pli-scheme-pacts-ev-battery-manufacturing/ https://www.europeanpharmaceuticalreview.com/news/173809/trends-in-biopharma-contract-manufacturing-2022/

- Scheduling problems in semiconductor manufacturing
 - Production scheduling
 - Flexible job shops with reentrant flows

• Robot sequencing problem

Weights of dispatching rules

Source: https://www.ibm.com/uk-en/cloud/learn/neural-networks https://blog.tensorflow.org/2021/05/introducing-tensorflow-decision-forests.html

• Weights of dispatching rules

J.-H. Lee, Y. Kim, Y. B. Kim, B.-H. Kim, G.-H. Jung, and H.-J. Kim*, "A sequential search method of dispatching rules for scheduling of LCD manufacturing systems," *IEEE Transactions on Semiconductor Manufacturing*, vol. 33, no. 4, pp. 496-503, 2020.

 O_{ii} : j^{th} operation of job i

- Job shop scheduling
 - Reinforcement learning is often used.
 - State, Action, Reward

- Cluster tool scheduling
 - Multiple processing modules (PMs), a material handling robot, and loadlocks (LL)
 - Wafers need to be processed in PMs in sequence.
 - Diverse wafer flows
 - Robot task sequence
 - Systematic analysis for cyclic scheduling
 - Reinforcement learning is applied for noncyclic scheduling with diverse products.

J.-H. Lee and H.-J. Kim^{*}, "Reinforcement learning for robotic flow shop scheduling with processing time variations," *International Journal of Production Research*, vol. 60, no. 7, pp. 2346-2368, 2022.

- Scheduling problems in steelmaking process
 - When charges arrive at the converter, engineers assign them to one of machines (RH (Ruhrstahl-Heraues) or LF (Ladle Furnace)).
 - RH and LF machines often require maintenance operations.
 - It is required to improve performance and assist engineers simultaneously.
 - Issues
 - Engineers have different preferences.
 - Hard to obtain some data, especially for the maintenance operations
 - Proposed approach
 - MILP + ML
 - MILP for improving the performance with limited information
 - ML for assisting engineers

- Scheduling problems in steelmaking process
 - MILP model
 - Objective function
 - Maximize the average time each charge spends between RH/LF and CC

• Decision variables

Variables	Definitions
X _{isk}	1, if machine k is allocated to charge i in stage s . 0, otherwise.
B _{is}	Start time of charge <i>i</i> in stage <i>s</i>
Z _{iskt}	1, if charge i is the tth process of machine k in stage s. 0, otherwise.
SL _i	Time that charge <i>i</i> spends between RH and CC
WL_k	Workload of machine k
OL_{kt}	1, if machine k processes special charges in $t - 1$ th and t th processes. 0, otherwise.
TU _{kt}	1, if machine k uses a transfer car successively in $t - 1$ th and t th processes. 0, otherwise.
NMT _{kt}	1, if there is enough time for the maintenance before the machine k 's tth process. 0, otherwise.

- Scheduling problems in steelmaking process
 - MILP model
 - Constraints

No.	Constraints	
(1)	$B_{is} + p_{is} + t_{kl} \le B_{i,ns(i,s)} + M \times (2 - X_{isk} - X_{i,ns(i,s),k})$	$\forall i \in I, s \in S - \{CC\}, k \in K, l \in K$
(2)	$B_{is} + p_{is} + a_k \le B_{jw} + M \times (2 - Z_{iskt} - Z_{j,w,k,t+1})$	$\forall i, j \in I, i \neq j, s, w \in S, k \in K, t = 1,, n - 1$
(3)	$\sum_{k \in K_i^s} X_{isk} = 1$	$\forall s \in S, i \in I^s$
(4)	$B_{i,CF} = f_{i,CF}, X_{i,CF,k_i^{CF}} = 1$	$\forall i \in I$
(5)	$B_{i,CC} = f_{i,CC}, X_{i,CC,k_i^{CC}} = 1$	$\forall i \in I$
(6)	$SL_i = B_{i,CC} - (B_{i,RF1} + p_{i,RF1})$	$\forall i \in I^{RF1}$
(7)	$lb_{SL} \leq SL_i$	$\forall \ i \in I$
(8)	$SL_i \leq ub_{SL}$	$\forall i \in I$

- (1): Flow constraints of each charge
- (2): Machine conflicts & Minimum idle time (for the logistics)
- (3): Machine allocations
- (4)-(5): Converter and CC are given
- (6)-(8): Time between RH and CC (objective function)

- Scheduling problems in steelmaking process
 - ML approach

	•	•			1 st stage	3 rd stage			1 st s	tage	2 nd s	tage	3 rd s	tage
			No.	Туре	Converter	Cont. Caster	2 nd refining code	Assignment	1 st start	1 st end	2 nd start	2 nd end	3 rd start	3 rd end
	Г	-	1	AAA	3	2	D	1RH	0:00	0:30	0:40	1:00	1:10	1:30
			2	BBB	2	3	E	2RH	0:10	0:40	0:50	1:10	1:20	1:40
			3	CCC	1	4	F	3RH	0:20	0:50	1:00	1:20	1:30	1:50
			4	DDD	3	1	G	LF	0:30	1:00	1:10	1:30	1:40	2:00
Already			5	AAA	2	2	Н	1RH	0:40	1:10	1:20	1:40	1:50	2:10
accigned			6	BBB	1	3	D	2RH	0:50	1:20	1:30	1:50	2:00	2:20
assigned			7	CCC	3	4	E	3RH	1:00	1:30	1:40	2:00	2:10	2:30
			8	DDD	2	1	F	LF	1:10	1:40	1:50	2:10	2:20	2:40
			9	AAA	1	2	G	LF+1RH	1:20	1:50	2:00	2:20	2:30	2:50
		-	10	BBB	3	3	Н	1RH	1:30	2:00	2:10	2:30	2:40	3:00
Current	\rightarrow	•	11	CCC	2	4	D		1:40	2:10			2:50	3:10
••••••	Г	-	12	DDD	1	1	E		1:50	2:20			3:00	3:20
			13	AAA	3	2	F		2:00	2:30			3:10	3:30
			14	BBB	2	3	G		2:10	2:40			3:20	3:40
			15	CCC	1	4	Н		2:20	2:50			3:30	3:50
Ομομο			16	DDD	3	1	D		2:30	3:00			3:40	4:00
Queue			17	AAA	2	2	E		2:40	3:10			3:50	4:10
			18	BBB	1	3	F		2:50	3:20			4:00	4:20
			19	CCC	3	4	G		3:00	3:30			4:10	4:30
			20	DDD	2	1	Н		3:10	3:40			4:20	4:40

- Descriptions of basic features
 - 1 Characteristics: Special charges, Low carbon
 - ② Secondary refining code: A set of candidate machines
 - ③ Converter, Continuous caster: Machines of 1st and 3rd stages
 - (4) Top charge: First charge of a cast
 - (5) More features...

- Scheduling problems in steelmaking process
 - MILP+ML model

	Accuracy	Macro F1
KNN	0.5563	0.5059
AdaBoost	0.5594	0.5531
Ridge Regression	0.6459	0.5166
SVM	0.6678	0.6438
Logistic Regression	0.6735	0.6475
Random Forest	0.7468	0.6580
Multi-Layer Perceptron	0.7723	0.7006
Gradient Boosting	0.8105	0.7285
XGBoost	0.8213	0.7417
CatBoost	0.8451	0.7691
LightGBM	0.8492	0.7561
LSTM	0.9173	0.8144
GRU	0.9664	0.9530

Insulation Manufacturing

Source: https://weekly.hankooki.com/news/articleView.html?idxno=6791764

Insulation Manufacturing

- Hybrid flow shop scheduling
 - Machine learning for initial sorting
 - Features: due dates, processing times at each stage, factory state, job thickness...
 - Output: ordering rule (EDD, LPT...)

Project Scheduling for Shipbuilding

- Project scheduling with reinforcement learning
 - Resource-constrained project scheduling problem
 - Precedence relations, time lags, activity time uncertainty
 - Makespan minimization, resource leveling

Source: https://blog.bizvibe.com/blog/top-shipbuilding-companies-world

https://www.insidehousing.co.uk/news/news/engie-sells-construction-and-services-arm-to-bouygues-in-6bn-deal-73267

Project Scheduling for Shipbuilding

• Resource leveling with reinforcement learning _ minimal time lag

<Algorithm comparison>

Objective	Time lag extension ratio	Greedy algorithm	Simulated annealing	RL
	0.1	168.194	172.307	160.104
Std (obj: 175.054)	0.2	160.500	169.655	153.702
-	0.3	152.100	163.792	148.367

Source: http://www.kclng.co.kr/en/Technology/kc.php https://blog.samsungshi.com/?page=3

Rule Extraction from Schedule Data

- Rule extraction with a decision tree
 - Olafsson, S., & Li, X. (2010). Learning effective new single machine dispatching rules from optimal scheduling data. International Journal of Production Economics, 128(1), 118-126.

Scheduling with ML

Scheduling with ML

- Scheduling with machine learning
 - Imitation learning
 - Solving subproblems with machine learning
 - Parameter selection for scheduling algorithms
 - New dispatching rule working well in a dynamic and unseen environment

	Exact Algorithm	Meta-heuristic	Dispatching rule	ML
Performance	optimal	good	poor	?
Real-time scheduling	Х	Х	0	0
Dynamic environment	Х	Х	0	0
Timing control for scheduling	0	0	Х	Δ

 ML as one of useful tools for scheduling especially in a dynamic environment

Thank You.

Hyun-Jung Kim

hyunjungkim@kaist.ac.kr msslab.kaist.ac.kr

Department of Industrial & Systems Engineering KAIST

March. 1, 2023