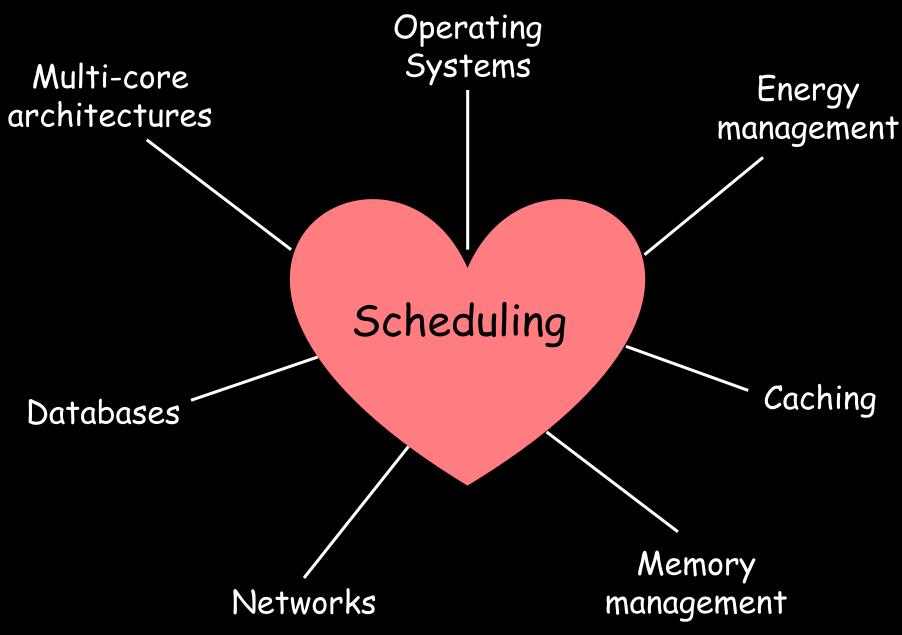
Recent Breakthroughs in Stochastic Scheduling Theory

Mor Harchol-Balter Computer Science Dept. Carnegie Mellon University

<u>schedulingseminar.com</u>

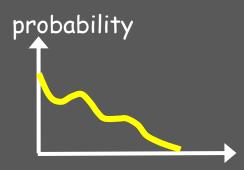


Scheduling

Worst-case

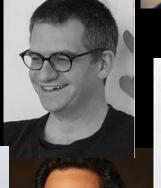
Adversary chooses job sizes Adversary chooses arrival times

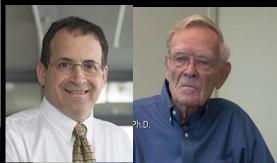
Stochastic

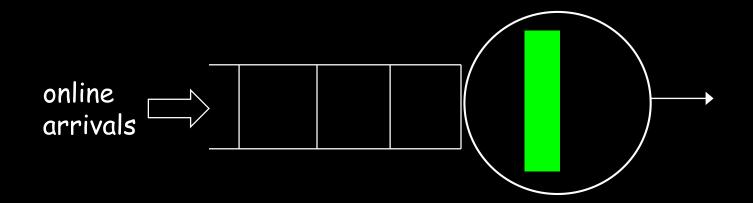


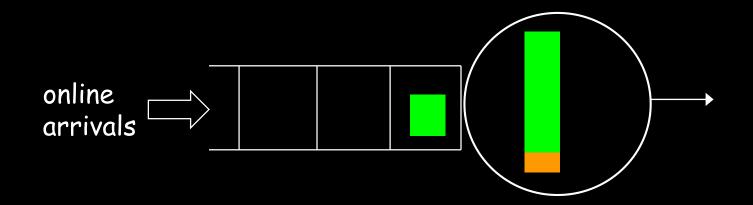
Job sizes drawn from distribution Arrival times drawn from distribution

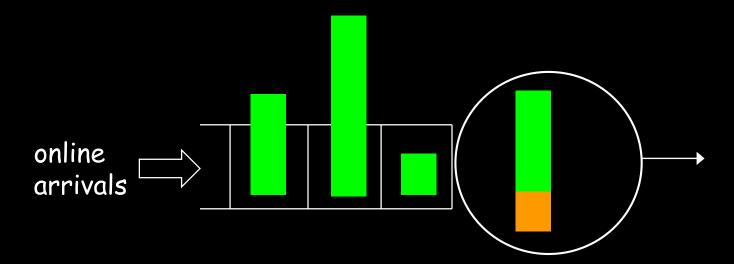
Some folks in Stochastic Scheduling

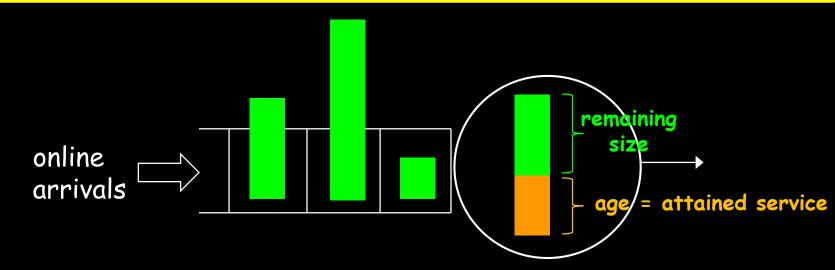


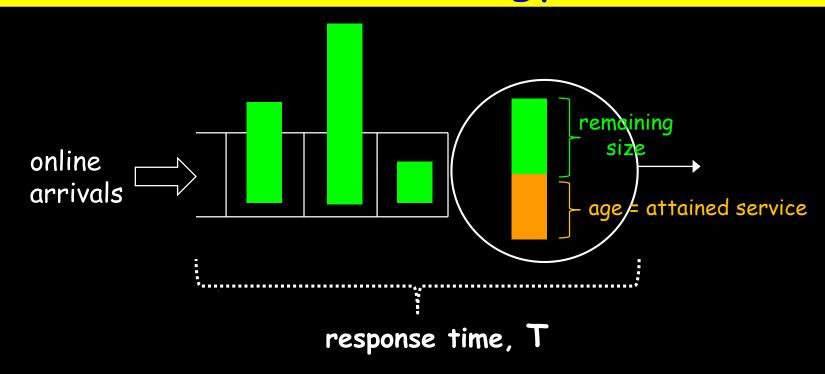






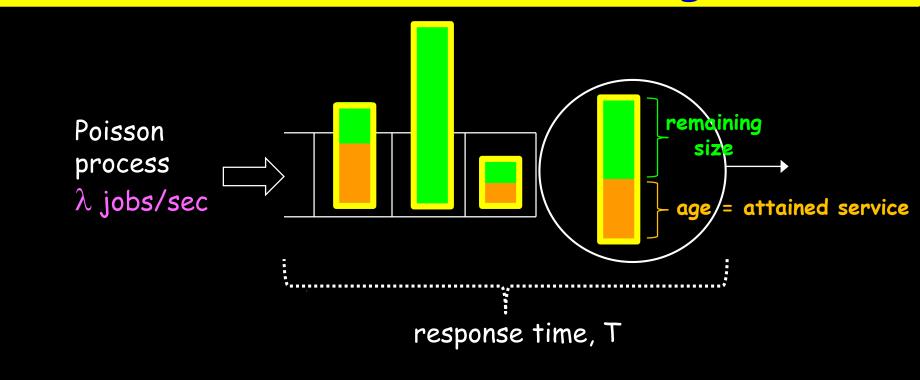


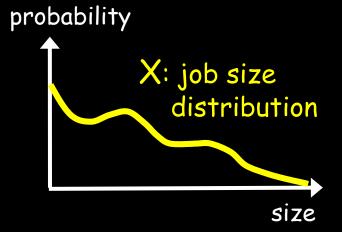




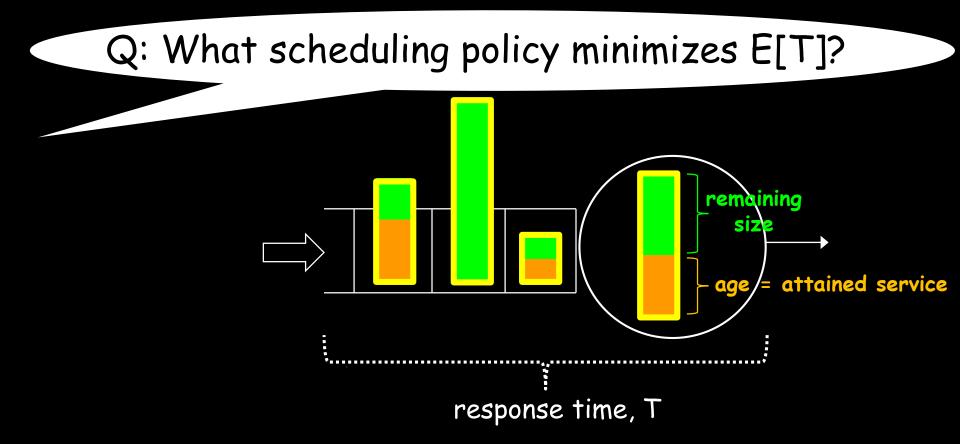
Scheduling Policy (preempt-resume)

M/G/1 with Scheduling





"Load" = fraction time server busy $\rho = \lambda \cdot E[X] < 1$

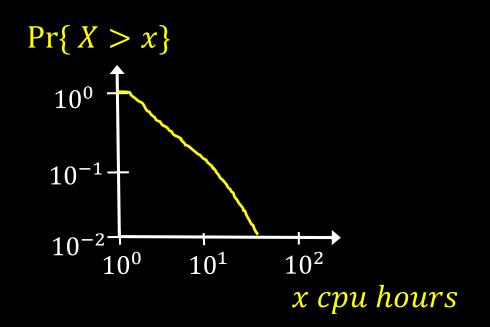


A: SRPT -Shortest Remaining Processing Time [first M/G/1 analysis -- Schrage 1966]

How much does scheduling matter? $C_{x}^{2} = 1$ $C_{X}^{2} = 100$ Var(X)C_X² $E[X]^2$ Low variability High variability ET FCFS ET SRPT **FCFS** SRPT load p load p

Empirical Job Size Distribution

UNIX jobs. [Harchol-Balter, Downey - SIGMETRICS 1996]

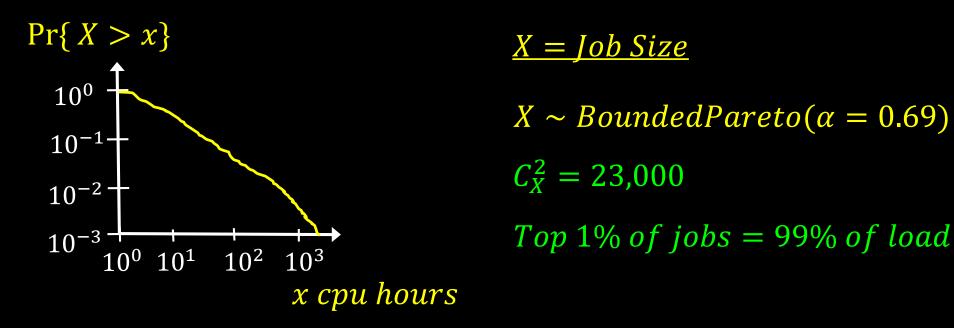


X = Job Size $X \sim BoundedPareto(\alpha = 1.0)$ $C_X^2 = 50$ Top 1% of jobs = 50% of load

Upshot: Scheduling matters

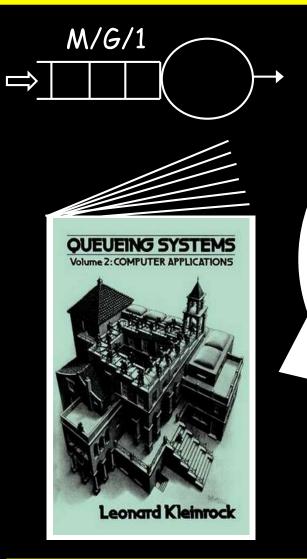
Empirical Job Size Distribution

Borg Scheduler at Google [Tirmazi, Barker, Deng, Haque, Qin, Hand, Harchol-Balter, Wilkes EUROSYS 2020]



Upshot: Scheduling REALLY matters!

so FEW scheduling policies analyzable...



$$E[T(x)]^{FCFS} = \frac{\lambda E[X^2]}{2(1-\rho)} + x$$

$$E[T(x)]^{SRPT} = \frac{\lambda E[\min(X, x)^2]}{2(1 - \rho_{\le x})^2} + \int_{t=0}^{x} \frac{dt}{1 - \rho_{\le t}}$$

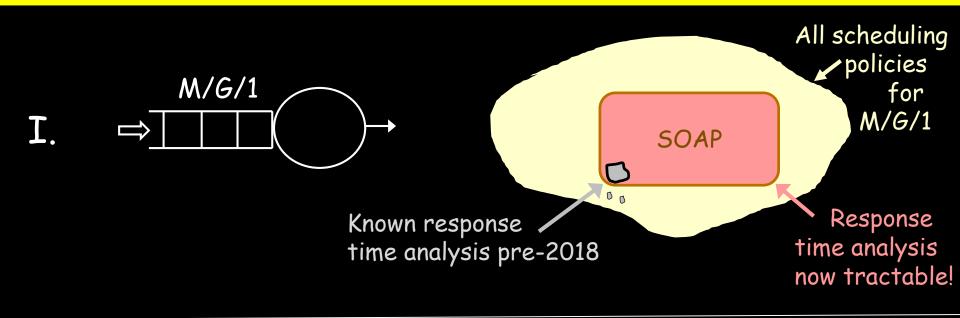
Similar response time formulas for: FB, PS, MLPS, PSJF, SJF, LCFS, PLCFS, NP-Prio, P-Prio.

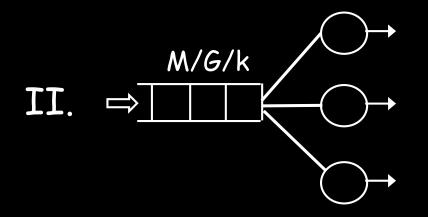
And that's basically it!

so MANY policies we can't analyze

Outline

Stochastic scheduling breakthroughs in past 3 years





<u>Scheduling in multi-server systems</u> <u>wide open</u>:

First bounds

Optimality results

Papers relevant to this talk

- Scully, Harchol-Balter, Scheller-Wolf SIGMETRICS 2018
- Grosof, Scully, Harchol-Balter IFIP PERFORMANCE 2018
- Scully, Harchol-Balter ALLERTON 2018
- Grosof, Scully, Harchol-Balter IFIP PERFORMANCE 2019
- Scully, Harchol-Balter, Scheller-Wolf SIGMETRICS 2020
- Scully, Grosof, Harchol-Balter IFIP PERFORMANCE 2020
- Scully, Grosof, Harchol-Balter- SIGMETRICS 2021
- Grosof, Yang, Scully, Harchol-Balter- SIGMETRICS 2021

INFORMS '18 APS Finalist; Performance '18 Award; Sigmetrics '19 Award; Sigmetrics '20 Award

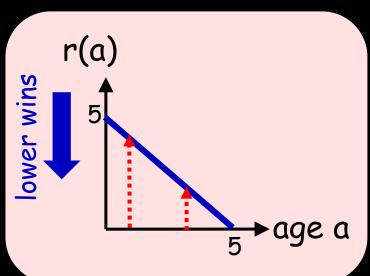
Ziv Scully

Isaac Grosof

<u>SOAP Policies</u>: all policies expressible via a rank function.

- Rank is a function of age (and the job's size or class)
- Always serve job of lowest rank
- FCFS tie-breaking

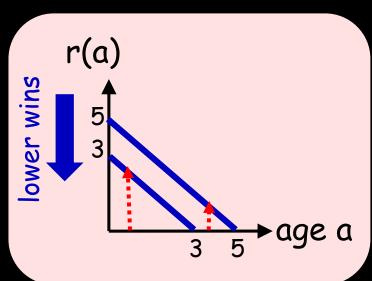
SRPT



<u>SOAP Policies</u>: all policies expressible via a rank function.

- Rank is a function of age (and the job's size or class)
- Always serve job of lowest rank
- FCFS tie-breaking

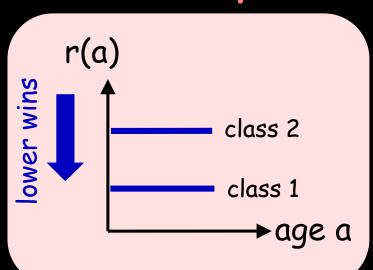
SRPT



<u>SOAP Policies</u>: all policies expressible via a rank function.

- Rank is a function of age (and the job's size or class)
- Always serve job of lowest rank
- FCFS tie-breaking

Priority

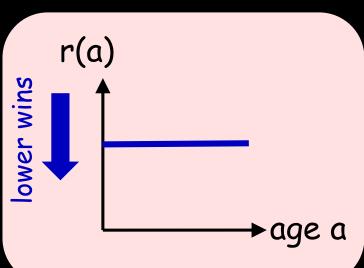


CONE

<u>SOAP Policies</u>: all policies expressible via a rank function.

- Rank is a function of age (and the job's size or class)
- Always serve job of lowest rank
- FCFS tie-breaking

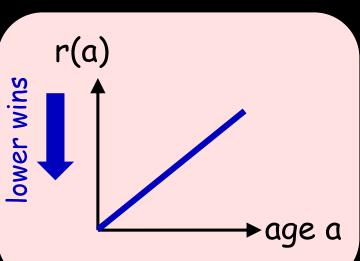
FCFS



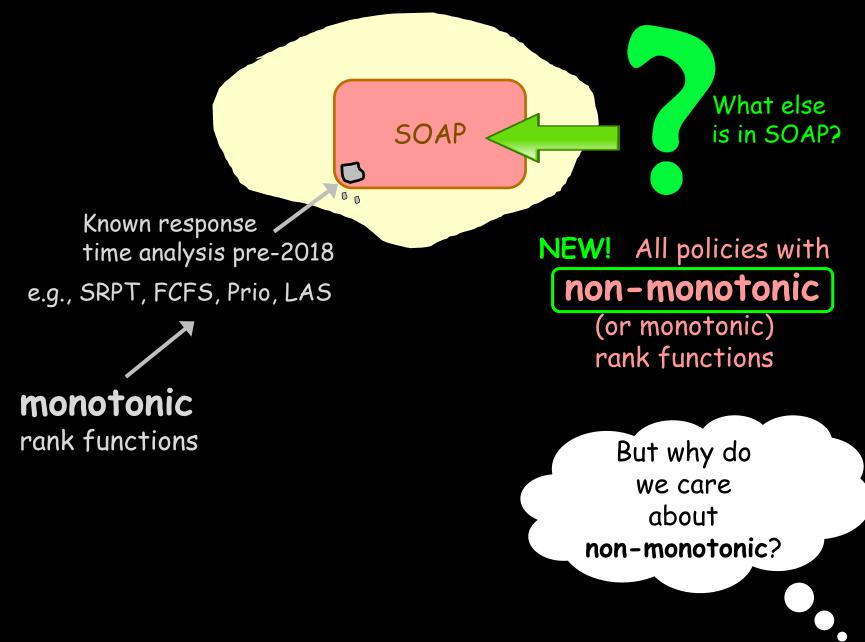
<u>SOAP Policies</u>: all policies expressible via a rank function.

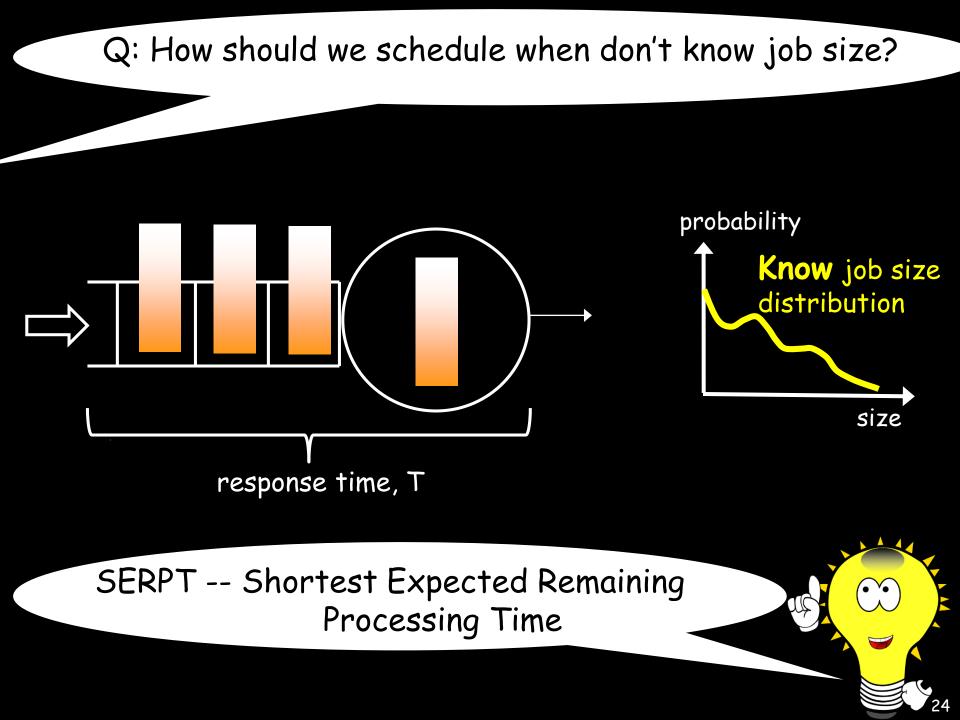
- Rank is a function of age (and the job's size or class)
- Always serve job of lowest rank
- FCFS tie-breaking

LAS



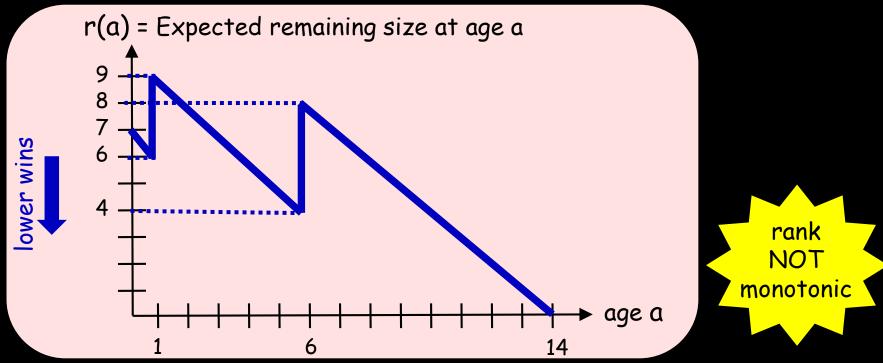
All scheduling policies for M/G/1





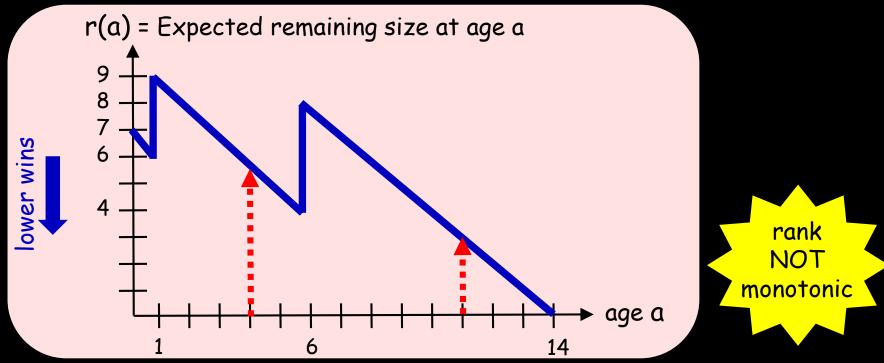
$$X = \begin{cases} 1 & w.p. \frac{1}{3} \\ 6 & w.p. \frac{1}{3} \\ 14 & w.p. \frac{1}{3} \end{cases}$$

 $r(a) = E[X - a \mid X > a]$



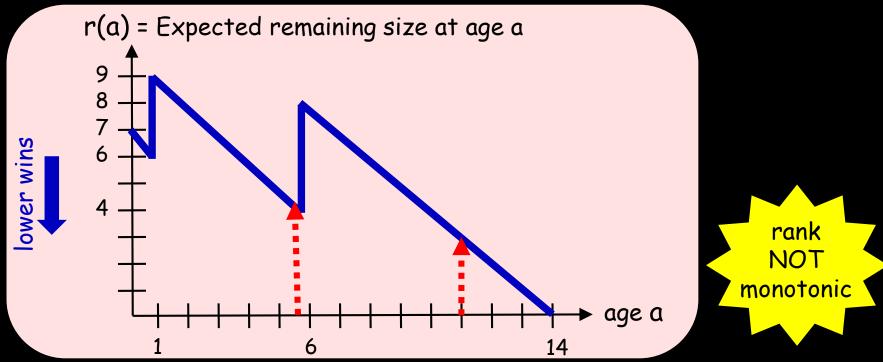
$$X = \begin{cases} 1 & w.p. \frac{1}{3} \\ 6 & w.p. \frac{1}{3} \\ 14 & w.p. \frac{1}{3} \end{cases}$$

 $r(a) = E[X - a \mid X > a]$



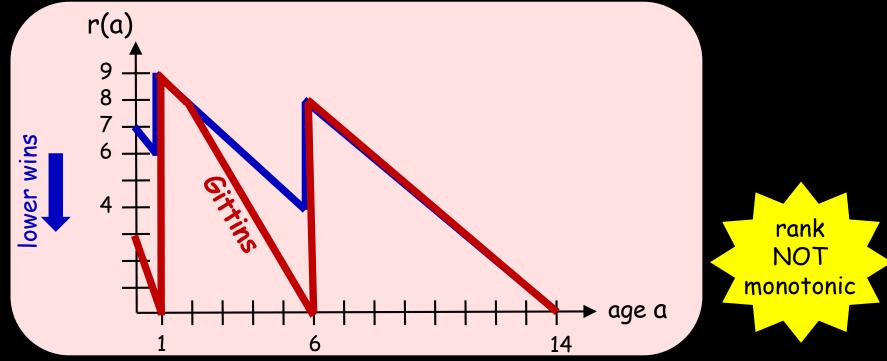
$$X = \begin{cases} 1 & w.p. \frac{1}{3} \\ 6 & w.p. \frac{1}{3} \\ 14 & w.p. \frac{1}{3} \end{cases}$$

 $r(a) = E[X - a \mid X > a]$

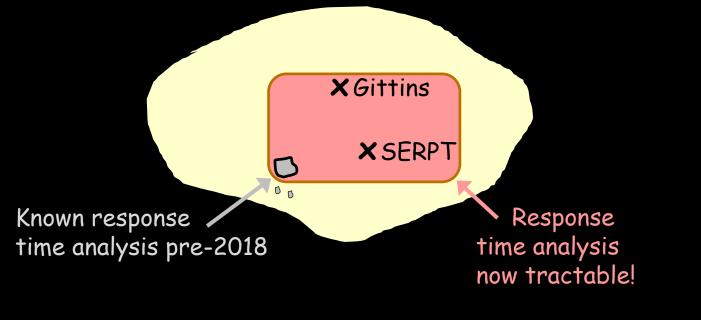


 $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ *w*.*p*. 1 X =6 *w*.*p*. 14 *w*.*p*.

 $r(a) = \inf_{\Delta} \frac{E[\min\{X - a, \Delta\} \mid X > a]}{\Pr\{X \le a + \Delta \mid X > a\}}$

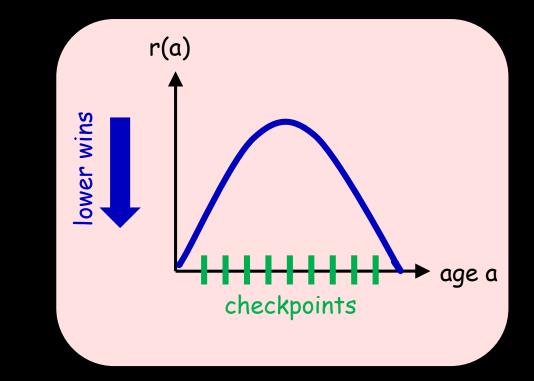


All scheduling policies for M/G/1



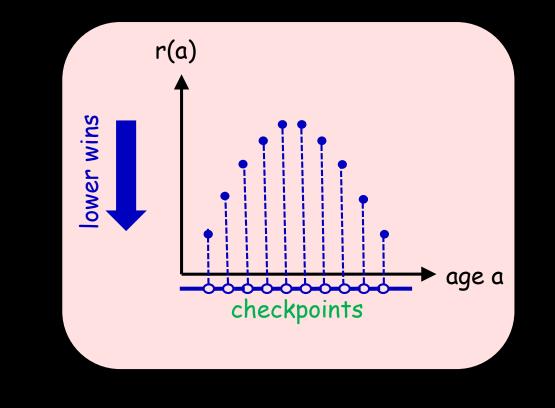
First response time anlaysis of Gittins and SERPT in M/G/1 [Sigmetrics 2018 "SOAP" paper] More SOAP policies

Any policy where preemption is limited to checkpoints

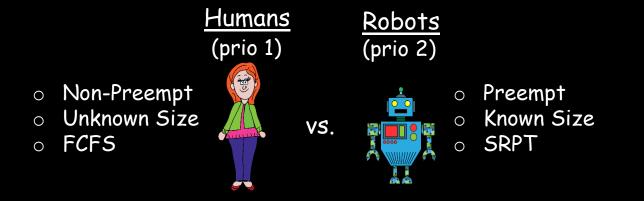


More SOAP policies

Any policy where preemption is limited to checkpoints



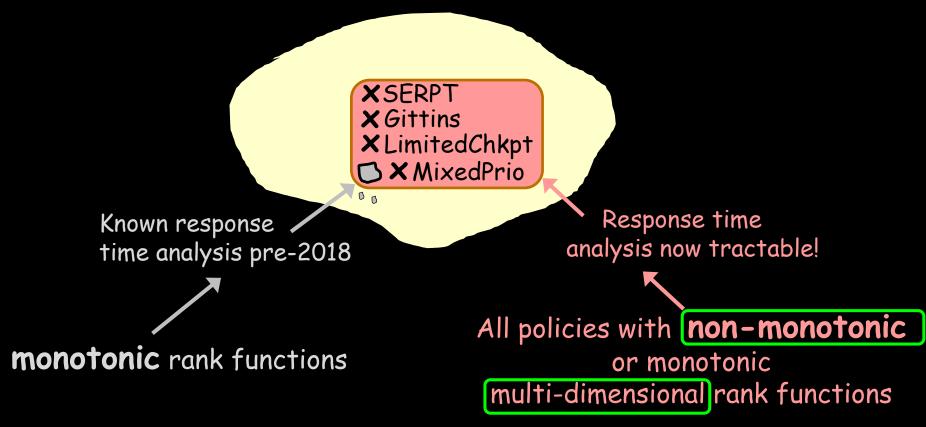
More SOAP policies



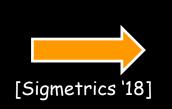
<u>Twist</u>: If remsize(robot) $< x_H$ then robot has priority over un-started human.

 $r_{Human}(a) = (-a, x_H)$ $r_{Robot(x)}(a) = (0, x - a)$

All scheduling policies for M/G/1



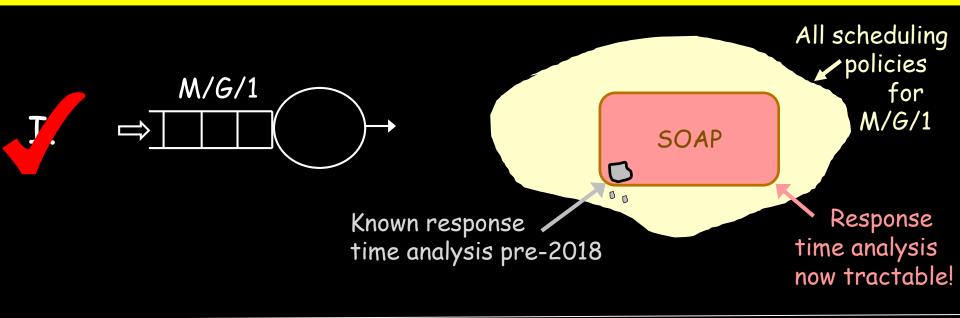
Given: any rank function

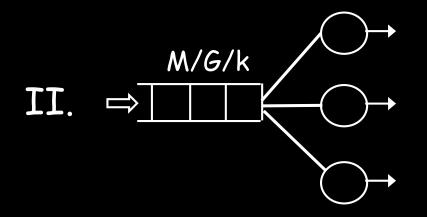


Closed-form response time (mean & transform)

Outline

Stochastic scheduling breakthroughs in past 3 years





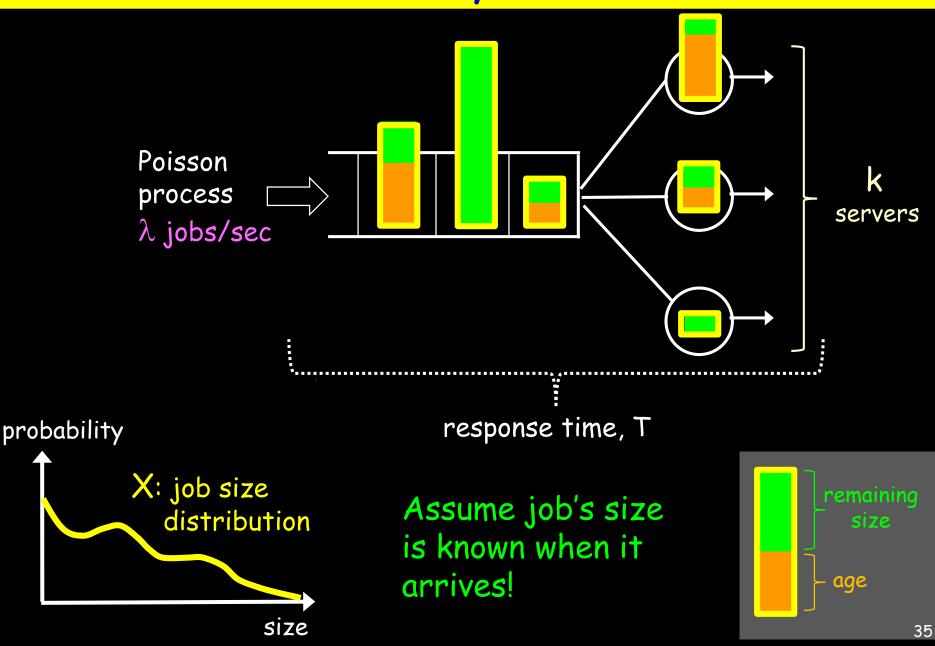
<u>Scheduling in multi-server systems</u> <u>wide open</u>:

First bounds

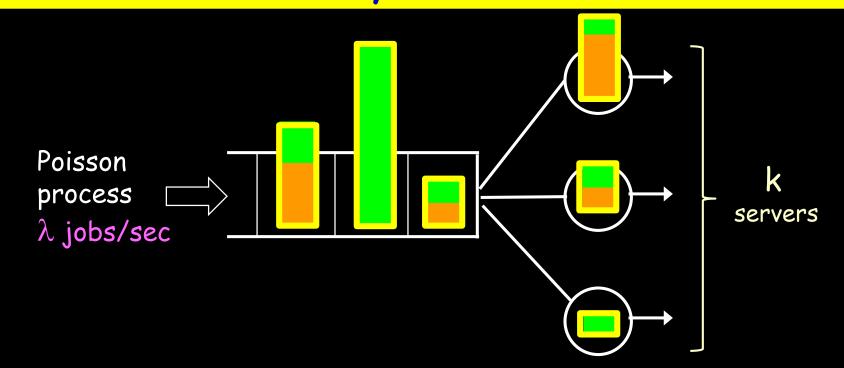
Optimality results

(start by assuming known sizes)

Multi-server system: M/G/k

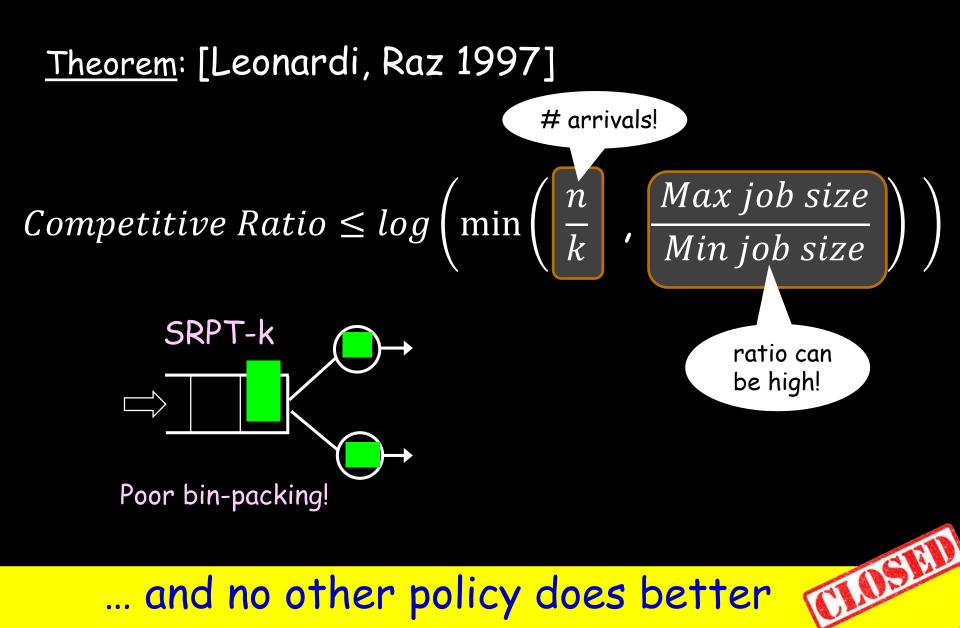


Multi-server system: M/G/k

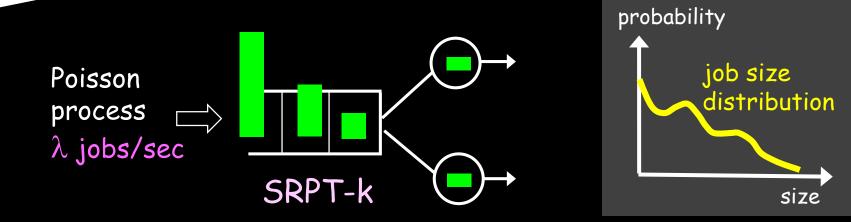


Q: How should we schedule to minimize E[T]? (job sizes known)

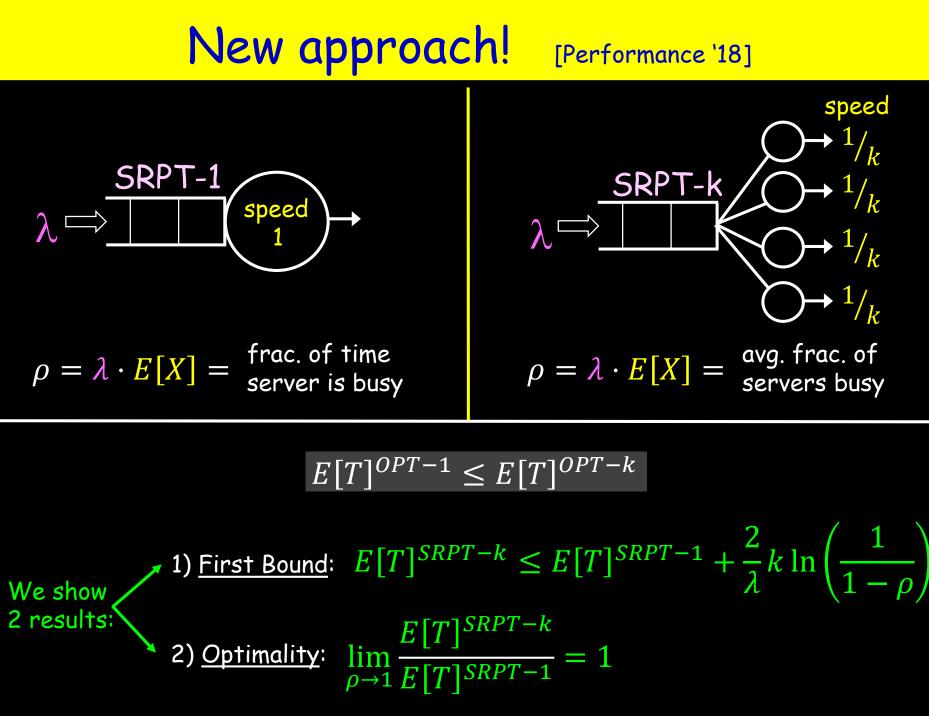
SRPT-k is FAR from OPT in worst-case



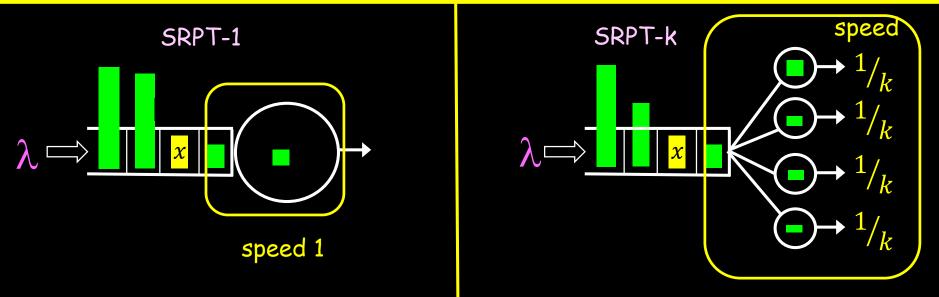
but maybe SRPT-k is not bad in M/G/k (stochastic) setting?



State-of-the-art for M/G/k scheduling mostly non-existent ...

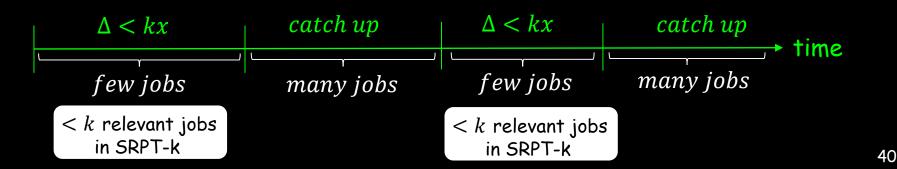


Proof Sketch



Show RelevantWork(x) is similar in SRPT-1 and SRPT-k

 $\Delta = E[RelWork(\mathbf{x})]^{SRPT-k} - E[RelWork(\mathbf{x})]^{SRPT-1}$



First response time bound for SRPT-k

 $E[RelWork(x)]^{SRPT-k} - E[RelWork(x)]^{SRPT-1} \le kx$

First
$$E[T]^{SRPT-k} \leq E[T]^{SRPT-1} + \frac{2}{\lambda}k \ln\left(\frac{1}{1-\rho}\right)$$

 $\left| \begin{bmatrix} \text{Lin, Wierman, } \\ \text{Zwart 2011} \end{bmatrix} \\ \text{(assuming ~ finite variance)} \end{bmatrix}$
Optimality
result
 $E[T]^{SRPT-k} \\ \overline{E[T]}^{SRPT-k} \rightarrow 1 \quad as \ \rho \rightarrow 1$

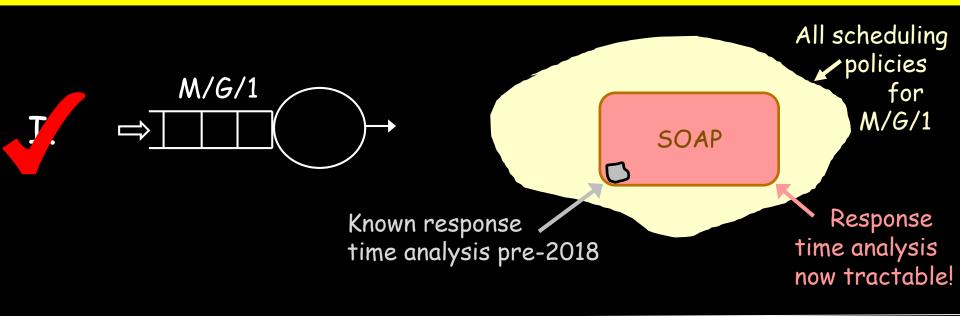
Bound versus Simulation

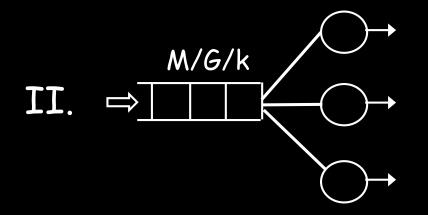


 $\times \sim \text{Uniform}(0, 1)$, k = 10 servers

Outline

Stochastic scheduling breakthroughs in past 3 years





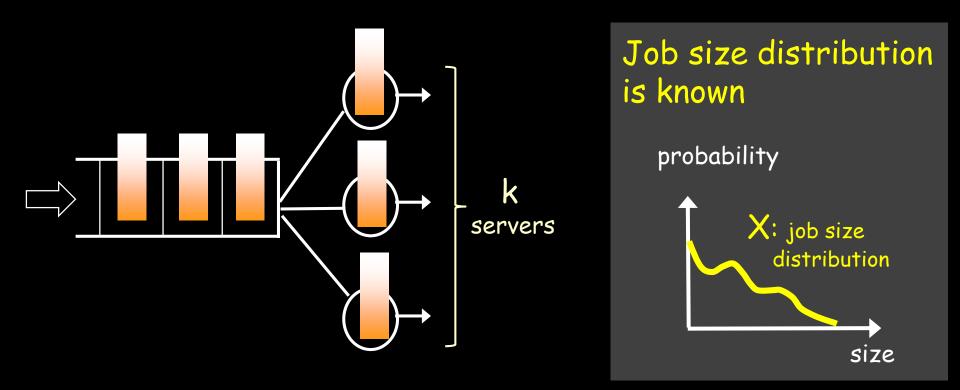
<u>Scheduling in multi-server systems</u> <u>wide open</u>:

First bounds

Optimality results

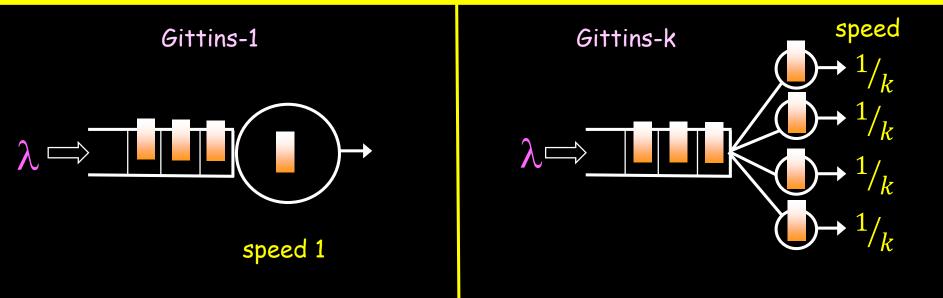
Done with case where know size. What if don't know size?

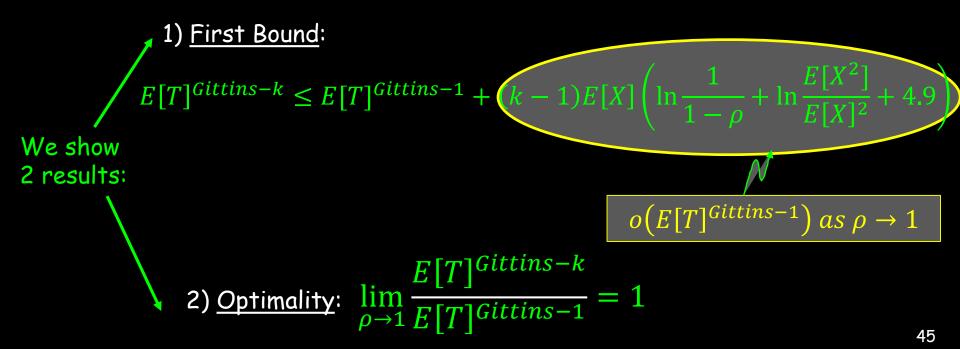
Multi-server: Size Unknown [Sigmetrics 21]



Q: What scheduling policy makes sense here?

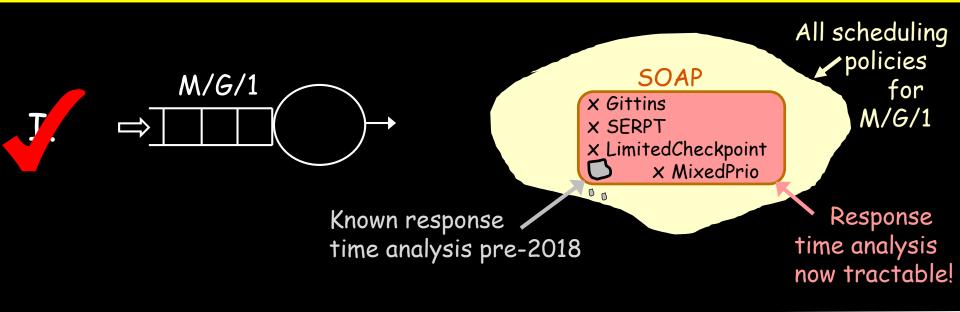
Gittins-k for M/G/k [Sigmetrics 21]

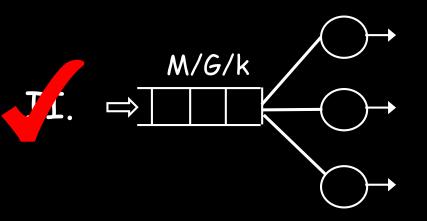




Summary

Stochastic scheduling breakthroughs in past 3 years





<u>Scheduling in multi-server systems</u> wide open:

First bounds

Optimality results

SRPT-k, PSJF-k, RS-k, FB-k, Gittins-k

Open problems on stochastic scheduling...

Harchol-Balter. "Open problems in queueing theory inspired by datacenter computing." *Queueing Systems*, 97(1), 2021, pp. 3--37.

