
The Longest Processing Time rule for

identical parallel machines revisited

Federico Della Croce1,2

1DIGEP - Politecnico di Torino, Italy

2CNR, IEIIT, Torino, Italy

joint work with Rosario Scatamacchia

schedulingseminar.com



Outline

1 Introduction

2 Minimizing makespan on identical parallel machines and the LPT
rule.

3 Improving LPT

4 From approximation to heuristics: SLACK rule

5 Conclusions



ILP modeling and approximation

• Every standard undergraduate course on Operations Research
(OR) embeds a section devoted to [Integer] Linear Programming
(ILP) Modeling.

• OR experts and practitioners apply ILP models in order to
• provide formal representations of real problems;

• directly compute the corresponding solution by means of ILP
solvers (unfortunately does not always work that well...);

• compute heuristic solutions by means of matheuristics procedures
embedding the solutions of ILP subproblems into local search
approaches;

• derive approximation bounds on problems where the related ILP
formulations present strong structural properties



Approximation algorithms: standard notation

• OPT : optimal solution value

• A: solution value of the approximation algorithm

• rA = A
OPT : performance ratio.

• We are typically interested in approximation algorithms requiring
polynomial time complexity.



Approximation via standard ILP modeling:
Minimum Vertex Cover

• Input: A graph G = (V,E)

• Definition: A vertex cover of G is a subset of V that covers (i.e.,
“touches”) every edge in E.



Approximation via standard ILP modeling:
Minimum Vertex Cover

• ILP formulation of the minimum vertex cover (MVC) problem

MVC =

 min
∑

i∈V xi

xi + xj > 1 ∀(i, j) ∈ E
xi ∈ {0, 1} ∀i ∈ V

MVC-r =

 min
∑

i∈V xi

xi + xj > 1 ∀(i, j) ∈ E
0 ≤ xi ≤ 1 ∀i ∈ V

• Solving to optimality MVC-R (requires polynomial time) and
setting xi = 1 for all variables with value ≥ 0.5 provides a
2-approximation ratio.



Approximation via non standard ILP modeling

• We focus here on non standard ILP modeling for
approximation.

• The aim is to mimick by ILP modeling the behavior of a
procedure (typically greedy).

• We apply this approach to

• Machine Scheduling: problem P ||Cmax and the Longest
Processing Time rule.



Parallel machines scheduling: Introduction

• We consider problem Pm||Cmax where the goal is to schedule n
jobs on m identical parallel machines Mi (i = 1, . . . ,m)
minimizing the makespan.

• We revisit the famous Longest Processing Time (LPT ) rule
proposed by Graham - 1969:
sort the jobs 1, ..., n in non-ascending order of their processing
times pj (j = 1, . . . , n) and then assign one job at a time to the
machine whose load is smallest so far.

 
 

 
 
 
 
 
 
 
 
 
 
 
 

              blue and grey jobs start processing before j 
 
 
 
 
 
 
 
 
 
 
 

 

machine Mi j 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

0 
 

 time 

 

Figure:



Parallel machines scheduling: Introduction

• Assume the jobs indexed by non-increasing pj
(pj ≥ pj+1, j = 1, . . . , n− 1).

• Denote the solution values of the LPT schedule and the optimal
makespan by CLPT

m and C∗m respectively, where index m
indicates the number of machines.

• Denote by rk =
CLPT

m

C∗m
the performance ratio of the LPT schedule

when k jobs are assigned to the machine yielding the maximum
completion time (the critical machine).

• Denote by j′ denotes the critical job (the job inducing the
makespan).



Pm||Cmax problem and LPT rule properties

• C∗m ≥ max{p1,

n∑
j=1

pj

m }.

• CLPT
m is optimal if pj′ >

C∗m
3 .

• CLPT
m ≤

j′−1∑
j=1

pj

m + pj′ ≤ C∗m + pj′(1− 1
m ) ≤ ( 4

3 −
1

3m )C∗m

[Graham 1969 - see also https://elementsofscheduling.nl chap. 8].

• For each job i assigned by LPT to position j on a machine:

pi ≤ C∗m
j

[Chen 1993].



LPT rule properties:

Known LPT performance ratios.

• r1 = 1.

• r2 ≤ 4
3 −

1
3(m−1) - [Chen 1993].

• r3 ≤ 4
3 −

1
3m - [Graham 1969].

• rk ≤ k+1
k −

1
km k ≥ 3 [Coffman and Sethi 1976 - generalizes

Graham].

Notice that

• r2 = 1 for m = 2;

• r2 = r4 for m = 3, r2 < r4 for m ≥ 4;

• rk < rk+1 for k ≥ 3

=⇒ Improving r3 improves LPT .
We focus then on instances where the critical job is in position 3.



Tight worst-case examples for LPT

• 2 machines - 5 jobs −→ [3, 3, 2, 2, 2].

• C∗m=2 = 6, CLPT
m=2 = 7, r3 = 4

3 −
1

3m = 7
6 .

• 3 machines, 7 jobs −→ [5, 5, 4, 4, 3, 3, 3].

• C∗m=3 = 9, CLPT
m=3 = 11, r3 = 4

3 −
1

3m = 11
9 .

• m machines, 2m + 1 jobs
−→ [2m− 1, 2m− 1, 2m− 2, 2m− 2, ...,m,m,m] .

• C∗m = 3m =
∑n

i=1 pi

m , CLPT
m = 4m− 1,

r3 = 4m−1
3m = 4

3 −
1

3m .

• Worst-case always occurs with 2m + 1 = n jobs where the critical
job is job n in position 3 and when C∗m =

∑n
i=1 pi/m.



LPT revisited

• We assume that the critical job in LPT is the last one, namely
j′ = n. If not, we would have further jobs after the critical job
that do not affect the makespan provided by LPT but can
contribute to increasing the optimal solution value.

• We analyze for m ≥ 3:
• 2m+ 2 ≤ n ≤ 3m (or else the critical job would be in position
≥ 4);

• n = 2m+ 1.

• We recall that for n ≤ 2m the performance ratio of LPT is
≤ 4

3 −
1

3(m−1) .

• We employ Linear Programming to perform the analysis.



LPT revisited: 2m+ 2 ≤ n ≤ 3m

Proposition
If LPT schedules at least 3 jobs on a non crit. machine before
assigning the crit. job, then LPT has an approx. bound ≤ 4

3 −
1

3(m−1)
for m ≥ 5.

Sketch of proof.
• We assume n in position 3, or else either r2 holds or at least r4

holds. Hence, LPT schedules at least another job in position ≥ 3.
• We consider an LP model where we arbitrarily set the value

CLPT
m to 1 and minimize the value of C∗m.

• L denotes the starting time of job n, i.e. CLPT
m = L + pn.

• C1 denotes the compl. time of the non-crit. machine processing
at least 3 jobs.

• C2 denotes the sum of compl. times of the other (m− 2)

machines, i.e. C2 =
n∑

j=1

pj − C1 − (L + pn).

• Due to list scheduling, condition C2

m−2 ≥ L holds.

• As n is in position 3, condition pn ≤ C∗m
3 holds.



LPT revisited: 2m+ 2 ≤ n ≤ 3m (LP formulation)

• We associate non-negative variables pn and sump with pn and
n∑

j=1

pj .

• We associate non-negative variables c1, c2, l, opt with C1, C2, L
and C∗m.

• The following LP model (for given m) holds:

minimize opt (1)

−m · opt + sump ≤ 0 (2)

3 · pn − c1 ≤ 0 (3)

l − c1 ≤ 0 (4)

(m− 2)l − c2 ≤ 0 (5)

c1 + l + pn + c2 − sump = 0 (6)

l + pn = 1 (7)

pn −
opt

3
≤ 0 (8)

pn, sump, c1, c2, l, opt ≥ 0 (9)



LPT revisited: 2m+ 2 ≤ n ≤ 3m (LP formulation)

• The minimization of the objective function (1), after setting
w.l.o.g LPT solution value to 1 (constraint (7)), provides an
upper bound on the performance ratio of the LPT rule.

• Constraint (2): −m · opt + sump ≤ 0 corresponds to bound

C∗m ≥

n∑
j=1

pj

m .
• Constraint (3): 3 · pn − c1 ≤ 0 states that the value of c1 is at

the least 3pn, since 3 jobs with proc. time ≥ pn are assigned to a
non critical machine.

• Constraint (4): l − c1 ≤ 0 states that the compl. time of the
critical machine before the last job is loaded is less than the
compl. time of the other machine processing at least three jobs.

• Constraint (5): (m− 2)l − c2 ≤ 0 fulfills the list scheduling
requirement.

• Constraint (6): c1 + l + pn + c2 − sump = 0 guarantees that

variable sump represents
n∑

j=1

pj

• Constraint (8) corresponds to condition pn ≤ C∗m
3 .

• Constraints (9) state that all variables are non-negative.



LPT revisited: 2m+ 2 ≤ n ≤ 3m (LP formulation)

• The proposed LP model is continuous and contains just 6
variables and 7 constraints for any fixed m.

• By strong duality (and a little bit of reverse engineering) it is
possible to show that in the optimal solution, for any m ≥ 5, the
variables values are as follows

pn =
m− 1

4m− 5
; sump =

3m(m− 1)

4m− 5
;

c1 =
3(m− 1)

4m− 5
; c2 =

(m− 2)(3(m− 1)− 1)

4m− 5
;

l =
3(m− 1)− 1

4m− 5
; opt =

3(m− 1)

4m− 5
.

• Correspondingly, we have
CLPT

m

C∗m
≤ 1/opt = 4m−5

3(m−1) = 4
3 −

1
3(m−1) .

• Notice that this bound is not tight.



LPT revisited: other subcases

With similar analysis, and sometimes partial enumeration, the
following propositions also hold.

• For 3 ≤ m ≤ 4 and 2m + 2 ≤ n ≤ 3m, LPT (with job n critical)
has an approximation ratio ≤ 4

3 −
1

3(m−1) for 3 ≤ m ≤ 4.

• For n ≤ 2m and m ≥ 3, LPT has an approximation ratio

≤
(

4
3 −

1
3(m−1)

)
.

• For m ≥ 3 and n = 2m + 1, if LPT loads at least three jobs on a
machine before the critical job, then it has an approximation

ratio ≤
(

4
3 −

1
3(m−1)

)
.

The only case remaining is then related to instances with n = 2m + 1
where LPT schedules job n only in third position and n is critical.



Improving LPT

• Consider a slight algorithmic variation where a set of the sorted
jobs is first loaded on a machine and then LPT is applied on the
remaining job set.

• Let denote this variant as LPT (S) where S represents the set of
jobs assigned all together to a machine first.

We consider the following Algorithm 1.

Input: Pm||Cmax instance with n jobs and m ≥ 3 machines.
- Apply LPT yielding a schedule with makespan z1.
- Apply LPT ′ = LPT ({j′}) with solution value z2.
- Return min{z1, z2}.

In practice, this algorithm applies LPT first and then re-applies LPT
after having loaded first on a machine its critical job j′.



Improving LPT

Whenever both LPT and LPT ′ are applied, the following subcases
need to be considered

1 n = j′ = 2m + 1 with subcases

1 p2m+1 ≥ p1 − pm.

2 p2m+1 < p1 − pm.

2 n ≥ i > j′ = 2m + 1 with i critical in LPT ′.

3 n > j′ = 2m + 1 ≥ i with i critical in LPT ′.

We focus here on subcase 1.1 (n = j′ = 2m+ 1 and p2m+1 ≥ p1 − pm):
all other subcases provide with similar analysis approximation ratio
not superior to 4

3 −
1

3(m−1) .



Handling instances with
n = j′ = 2m+ 1 and p2m+1 ≥ p1 − pm

• Note that LPT must couple jobs 1, . . . ,m respectively with jobs
2m, . . . ,m + 1 on the m machines before scheduling job 2m + 1,

or else LPT has an approximation ratio ≤
(

4
3 −

1
3(m−1)

)
.

• Hence, the LPT schedule is as follows -
we denote by C(Mi) the completion time of machine Mi

M1 : 1, 2m → C(M1) = p1 + p2m

M2 : 2, 2m− 1 → C(M2) = p2 + p2m−1

. . .

Mm−1 : m− 1,m + 2 → C(Mm−1) = pm−1 + pm+2

Mm : m,m + 1 → C(Mm) = pm + pm+1

where job 2m + 1 will be assigned to the machine with minimum
completion time.



Handling instances with
n = j′ = 2m+ 1 and p2m+1 ≥ p1 − pm

LPT ′ can be shown to be as follows

M1 : 2m + 1,m, 2m → C(M1) = p2m+1 + pm + p2m

M2 : 1, 2m− 1 → C(M2) = p1 + p2m−1

M3 : 2, 2m− 2 → C(M3) = p2 + p2m−2

. . .

Mm−1 : m− 2,m + 2 → C(Mm−1) = pm−2 + pm+2

Mm : m− 1,m + 1 → C(Mm) = pm−1 + pm+1

with subcases

1 LPT ′ makespan is on M1.

2 LPT ′ makespan is on M2,...Mm.

We focus here on subcase 1 (LPT ′ makespan is on M1): the other
subcase provides with similar analysis approximation ratio not
superior to 4

3 −
1

3(m−1) .



Case n = j′ = 2m+ 1, p2m+1 ≥ p1 − pm,
LPT ′ makespan on M1

• If LPT ′ is not optimal, then it can be shown that
C∗m ≥ pm−1 + pm.

• We get the following result.

Proposition
If p2m+1 ≥ p1 − pm and LPT ′ makespan is equal to
p2m+1 + pm + p2m, then the proposed algorithm has an approximation
ratio not superior to 7

6 .

• Proof: again we employ Linear Programming to evaluate the
performance of LPT ′. We consider non-negative variables xj

associated with pj (j = 1, . . . , n) and a positive parameter
OPT > 0 associated with C∗m.



Case n = j′ = 2m+ 1, p2m+1 ≥ p1 − pm,
LPT ′ makespan on M1

The LP model is

maximize x2m+1 + xm + x2m (10)

subject to xm−1 + xm ≤ OPT (11)

x2m−1 + x2m + x2m+1 ≤ OPT (12)

x2m+1 − (x1 − xm) ≥ 0 (13)

x1 − xm−1 ≥ 0 (14)

xm−1 − xm ≥ 0 (15)

xm − xm+1 ≥ 0 (16)

xm+1 − x2m−1 ≥ 0 (17)

x2m−1 − x2m ≥ 0 (18)

x2m − x2m+1 ≥ 0 (19)

x1, xm−1, xm, xm+1, x2m−1, x2m, x2m+1 ≥ 0 (20)



Case n = j′ = 2m+ 1, p2m+1 ≥ p1 − pm,
LPT ′ makespan on M1

• The objective function value (10) represents an upper bound on
the worst case performance of the algorithm.

• Constraints (11)–(12) correspond to C∗m ≥ pm−1 + pm and
C∗m ≥ p2m−1 + p2m + p2m+1.

• Constraint (13) corresponds to the initial assumption
p2m+1 ≥ p1 − pm.

• Constraints (14)–(19) state that the considered relevant jobs are
sorted by non-increasing processing times.

• Constraints (20) indicate that the variables are non-negative.

• Further viable constraints where not necessary to reach the
required result. By setting OPT = 1, the cost function has value
7
6 .



Improving LPT : wrap up

Putting things together, the following theorem holds

Theorem
The proposed algorithm has an approximation ratio not superior to
4
3 −

1
3(m−1) for m ≥ 3.



From approximation to heuristics

• W.r.t. the worst-case analysis for m ≥ 3, the relevant subcase
was the one with p2m+1 ≥ p1 − pm and LPT ′ required to
schedule p2m+1 initially and then apply list scheduling first to the
sorted jobset p1, ..., pm according to LPT and then to the sorted
jobset pm+1, ..., p2m always according to LPT .

• We propose then an alternative approach that splits the sorted
job set in tuples of m consecutive jobs (1, . . . ,m;m + 1, . . . , 2m;
etc.) and sorts the tuples in non-increasing order of the difference
between the largest job and the smallest job in the tuple. Then a
list scheduling is applied to the set of sorted tuples. We denote
this approach as SLACK.



From approximation to heuristics

The SLACK heuristic:

Input: Pm||Cmax instance m machines and n jobs with processing
times pj (j = 1, . . . , n).
- Sort items by non-increasing pj .
- Consider tuples 1, . . . ,m; m+ 1, . . . , 2m; . . . ;n−m+ 1, . . . , n (if n/m
is not integer, add dummy jobs with null proc. time in the last tuple).
- For each tuple, compute the associated slack
p1 − pm; p(m+1) − p2m; . . . ; p(n−m+1) − pn.
- Sort tuples by non-increasing slack.
- Apply List Scheduling to this job ordering and return the solution.



SLACK heuristic

• Worst-case example for LPT with 3 machines, 7 jobs
−→ [5, 5, 4, 4, 3, 3, 3].

• By adding 2 dummy jobs, we get [5, 5, 4, 4, 3, 3, 3, 0, 0]
that is [5, 5, 4], [4, 3, 3], [3, 0, 0].

• Sorting tuples by non-increasing slack, we have
[3, 0, 0], [5, 5, 4], [4, 3, 3].

• Applying list scheduling, we get C(1) = 10, C(2) = 9, C(3) = 8
hence CSLACK

max = 10.

Since the construction and sorting of the tuples can be performed in
O(n + m logm), the running time of SLACK is O(n log n) due to the
initial jobs LPT sorting.



Computational testing

We compared SLACK to LPT on benchmark literature instances
(Iori, Martello 2008)

• Two classical classes of instances from literature are considered:
uniform instances (França et al. 1994) and non-uniform
instances (Frangioni et al. 2004).

• In uniform instances the processing times are integer uniformly
distributed in the range [a, b]. In non-uniform instances, 98% of
the processing times are integer uniformly distributed in
[0.9(b− a), b] while the remaining ones are uniformly distributed
in [a, 0.2(b− a)]. For both classes, we have
a = 1; b = 100, 1000, 10000.

• For each class, the following values were considered for the
number of machines and jobs: m = 5, 10, 25 and
n = 10, 50, 100, 500, 1000.

• For each pair (m,n) with m < n, 10 instances were generated for
a total of 780 instances.



Computational testing

SLACK LPT
wins draws wins

[a, b] m Instances # (%) # (%) # (%)
5 50 31 (62.0) 16 (32.0) 3 (6.0)

1-100 10 40 32 (80.0) 8 (20.0) 0 (0.0)
25 40 23 (57.5) 17 (42.5) 0 (0.0)
5 50 39 (78.0) 10 (20.0) 1 (2.0)

1-1000 10 40 40 (100.0) 0 (0.0) 0 (0.0)
25 40 27 (67.5) 12 (30.0) 1 (2.5)
5 50 39 (78.0) 10 (20.0) 1 (2.0)

1-10000 10 40 40 (100.0) 0 (0.0) 0 (0.0)
25 40 28 (70.0) 10 (25.0) 2 (5.0)

Overall 299 (76.7) 83 (21.3) 8 (2.0)

Table: Pm||Cmax non uniform instances.



Computational testing

SLACK LPT
wins draws wins

[a, b] m Instances # (%) # (%) # (%)
5 50 12 (24.0) 37 (74.0) 1 (2.0)

1-100 10 40 14 (35.0) 20 (50.0) 6 (15.0)
25 40 10 (25.0) 29 (72.5) 1 (2.5)
5 50 32 (64.0) 15 (30.0) 3 (6.0)

1-1000 10 40 27 (67.5) 5 (12.5) 8 (20.0)
25 40 24 (60.0) 12 (30.0) 4 (10.0)
5 50 36 (72.0) 12 (24.0) 2 (4.0)

1-10000 10 40 37 (92.5) 0 (0.0) 3 (7.5)
25 40 22 (55.0) 11 (27.5) 7 (17.5)

Overall 214 (54.9) 141 (36.1) 35 (9.0)

Table: Pm||Cmax uniform instances.



Computational testing

• SLACK shows up to be clearly superior to LPT : on 780
benchmark literature instances, SLACK wins 513 times, ties 224
times and loses 43 times only.

• SLACK shows up to be competitive also to other similar
state-of-the-art heuristics. It it is clearly superior to COMBINE
(Lee and Massey 1988) while it is slightly inferior to LDM
(Karmarkar and Karp 1982) though being more than an order of
magnitude faster.

• By adding a simple neighborhood search (NS) procedure in
cascade, SLACK + NS becomes already superior to LDM still
being more than an order of magnitude faster.



Conclusions

• We discussed how non standard ILP modeling can be successfully
applied to derive improved approximation results.

• We considered problem Pm||Cmax and revisited the LPT rule.

• By means of Linear Programming we improved Graham’s bound
from 4

3 −
1

3m to 4
3 −

1
3(m−1) for m ≥ 3.

• By similar analysis, a linear time algorithm for problem P2||Cmax

with a 13/12 approximation ratio can be derived;

• From the approximation analysis, we derived a simple O(n log n)
heuristic procedure that drastically improves upon the
performances of LPT .

• We believe that the proposed LP-based analysis can be
successfully applied in approximation theory as a valid alternative
to formal proof systems based on analytical derivation.



References

• B. Chen, ”A note on LPT scheduling”, Operation Research
Letters, 14,:139–142, 1993.

• E.G. Coffman, R. Sethi, ”A generalized bound on LPT
sequencing”, Revue Francaise d’Automatique Informatique,
Recherche Operationelle Supplement 10, 17–25, 1976.

• F. Della Croce, R. Scatamacchia, ”The Longest Processing Time
rule for identical parallel machines revisited”, Journal of
Scheduling, 23, 163–176, 2020.

• F. Della Croce, R. Scatamacchia, V. T’Kindt, ”A tight linear
13/12-approximation algorithm for the P2||Cmax problem”,
Journal of Combinatorial Optimization, 38, 608-617, 2019.

• R.L. Graham, ”Bounds on multiprocessors timing anomalies”,
SIAM Journal on Applied Mathematics 17, 416–429, 1969.

• N. Karmarkar, R.M. Karp, ”The differencing method of set
partitioning”, Technical Report UCB/CSD 82/113, University of
California, Berkeley, 1982.

• C.Y. Lee, J.D. Massey, ”Multiprocessor scheduling: Combining
LPT and MULTIFIT”, Discrete Applied Mathematics, 20,
233–242, 1988.


	Outline
	Introduction
	Minimizing makespan on identical parallel machines and the LPT rule.
	Improving LPT
	From approximation to heuristics: SLACK rule
	Conclusions

