The Longest Processing Time rule for identical parallel machines revisited

Federico Della Croce ${ }^{1,2}$
${ }^{1}$ DIGEP - Politecnico di Torino, Italy
${ }^{2}$ CNR, IEIIT, Torino, Italy

joint work with Rosario Scatamacchia
schedulingseminar.com

Outline

(1) Introduction
(2) Minimizing makespan on identical parallel machines and the LPT rule.
(3) Improving LPT
(4) From approximation to heuristics: SLACK rule
(5) Conclusions

ILP modeling and approximation

- Every standard undergraduate course on Operations Research (OR) embeds a section devoted to [Integer] Linear Programming (ILP) Modeling.
- OR experts and practitioners apply ILP models in order to
- provide formal representations of real problems;
- directly compute the corresponding solution by means of ILP solvers (unfortunately does not always work that well...);
- compute heuristic solutions by means of matheuristics procedures embedding the solutions of ILP subproblems into local search approaches;
- derive approximation bounds on problems where the related ILP formulations present strong structural properties

Approximation algorithms: standard notation

- OPT: optimal solution value
- A: solution value of the approximation algorithm
- $r_{A}=\frac{A}{O P T}$: performance ratio.
- We are typically interested in approximation algorithms requiring polynomial time complexity.

Approximation via standard ILP modeling:

 Minimum Vertex Cover- Input: A graph $G=(V, E)$
- Definition: A vertex cover of G is a subset of V that covers (i.e., "touches") every edge in E.

Approximation via standard ILP modeling: Minimum Vertex Cover

- ILP formulation of the minimum vertex cover (MVC) problem

$$
\begin{aligned}
\mathrm{MVC} & = \begin{cases}\min & \sum_{i \in V} x_{i} \\
x_{i}+x_{j} \geqslant 1 \quad \forall(i, j) \in E \\
x_{i} \in\{0,1\} \forall i \in V\end{cases} \\
\text { MVC-R } & = \begin{cases}\min & \sum_{i \in V} x_{i} \\
x_{i}+x_{j} \geqslant 1 \quad \forall(i, j) \in E \\
0 \leq x_{i} \leq 1 \quad \forall i \in V\end{cases}
\end{aligned}
$$

- Solving to optimality MVC-R (requires polynomial time) and setting $x_{i}=1$ for all variables with value ≥ 0.5 provides a 2 -approximation ratio.

Approximation via non standard ILP modeling

- We focus here on non standard ILP modeling for approximation.
- The aim is to mimick by ILP modeling the behavior of a procedure (typically greedy).
- We apply this approach to
- Machine Scheduling: problem $P \| C_{\max }$ and the Longest Processing Time rule.

Parallel machines scheduling: Introduction

- We consider problem $P_{m} \| C_{\max }$ where the goal is to schedule n jobs on m identical parallel machines $M_{i}(i=1, \ldots, m)$ minimizing the makespan.
- We revisit the famous Longest Processing Time (LPT) rule proposed by Graham - 1969:
sort the jobs $1, \ldots, n$ in non-ascending order of their processing times $p_{j}(j=1, \ldots, n)$ and then assign one job at a time to the machine whose load is smallest so far.

Parallel machines scheduling: Introduction

- Assume the jobs indexed by non-increasing p_{j} $\left(p_{j} \geq p_{j+1}, j=1, \ldots, n-1\right)$.
- Denote the solution values of the $L P T$ schedule and the optimal makespan by $C_{m}^{L P T}$ and C_{m}^{*} respectively, where index m indicates the number of machines.
- Denote by $r_{k}=\frac{C_{m P}^{L P T}}{C_{m}^{*}}$ the performance ratio of the $L P T$ schedule when k jobs are assigned to the machine yielding the maximum completion time (the critical machine).
- Denote by j^{\prime} denotes the critical job (the job inducing the makespan).

$P_{m} \| C_{\max }$ problem and $L P T$ rule properties

- $C_{m}^{*} \geq \max \left\{p_{1}, \frac{\sum_{i=1}^{n} p_{j}}{m}\right\}$.
- $C_{m}^{L P T}$ is optimal if $p_{j^{\prime}}>\frac{C_{m}^{n}}{3}$.
- $C_{m}^{L P T} \leq \frac{\sum_{j=1}^{j^{\prime}-1} p_{j}}{m}+p_{j^{\prime}} \leq C_{m}^{*}+p_{j^{\prime}}\left(1-\frac{1}{m}\right) \leq\left(\frac{4}{3}-\frac{1}{3 m}\right) C_{m}^{*}$
[Graham 1969-see also https://elementsofscheduling.nl chap. 8].
- For each job i assigned by $L P T$ to position j on a machine: $p_{i} \leq \frac{C_{m}^{*}}{j}$
[Chen 1993].

$L P T$ rule properties:

Known $L P T$ performance ratios.

- $r_{1}=1$.
- $r_{2} \leq \frac{4}{3}-\frac{1}{3(m-1)}-$ [Chen 1993].
- $r_{3} \leq \frac{4}{3}-\frac{1}{3 m}-$ [Graham 1969].
- $r_{k} \leq \frac{k+1}{k}-\frac{1}{k m} \quad k \geq 3$ [Coffman and Sethi 1976-generalizes Graham].

Notice that

- $r_{2}=1$ for $m=2$;
- $r_{2}=r_{4}$ for $m=3, r_{2}<r_{4}$ for $m \geq 4$;
- $r_{k}<r_{k+1}$ for $k \geq 3$
\Longrightarrow Improving r_{3} improves $L P T$.
We focus then on instances where the critical job is in position 3.

Tight worst-case examples for $L P T$

- 2 machines -5 jobs $\longrightarrow[3,3,2,2,2]$.
- $C_{m=2}^{*}=6, \quad C_{m=2}^{L P T}=7, \quad r_{3}=\frac{4}{3}-\frac{1}{3 m}=\frac{7}{6}$.
- 3 machines, 7 jobs $\longrightarrow[5,5,4,4,3,3,3]$.
- $C_{m=3}^{*}=9, \quad C_{m=3}^{L P T}=11, \quad r_{3}=\frac{4}{3}-\frac{1}{3 m}=\frac{11}{9}$.
- m machines, $2 m+1$ jobs
$\longrightarrow[2 m-1,2 m-1,2 m-2,2 m-2, \ldots, m, m, m]$.
- $C_{m}^{*}=3 m=\frac{\sum_{i=1}^{n} p_{i}}{4^{m}}, \quad C_{m}^{L P T}=4 m-1$, $r_{3}=\frac{4 m-1}{3 m}=\frac{4}{3}-\frac{1}{3 m}$.
- Worst-case always occurs with $2 m+1=n$ jobs where the critical job is job n in position 3 and when $C_{m}^{*}=\sum_{i=1}^{n} p_{i} / m$.

$L P T$ revisited

- We assume that the critical job in $L P T$ is the last one, namely $j^{\prime}=n$. If not, we would have further jobs after the critical job that do not affect the makespan provided by LPT but can contribute to increasing the optimal solution value.
- We analyze for $m \geq 3$:
- $2 m+2 \leq n \leq 3 m$ (or else the critical job would be in position ≥ 4);
- $n=2 m+1$.
- We recall that for $n \leq 2 m$ the performance ratio of $L P T$ is $\leq \frac{4}{3}-\frac{1}{3(m-1)}$.
- We employ Linear Programming to perform the analysis.

$L P T$ revisited: $2 m+2 \leq n \leq 3 m$

Proposition

If LPT schedules at least 3 jobs on a non crit. machine before assigning the crit. job, then LPT has an approx. bound $\leq \frac{4}{3}-\frac{1}{3(m-1)}$ for $m \geq 5$.
Sketch of proof.

- We assume n in position 3, or else either r_{2} holds or at least r_{4} holds. Hence, $L P T$ schedules at least another job in position ≥ 3.
- We consider an LP model where we arbitrarily set the value $C_{m}^{L P T}$ to 1 and minimize the value of C_{m}^{*}.
- L denotes the starting time of job n, i.e. $C_{m}^{L P T}=L+p_{n}$.
- C_{1} denotes the compl. time of the non-crit. machine processing at least 3 jobs.
- C_{2} denotes the sum of compl. times of the other $(m-2)$ machines, i.e. $C_{2}=\sum_{j=1}^{n} p_{j}-C_{1}-\left(L+p_{n}\right)$.
- Due to list scheduling, condition $\frac{C_{2}}{m-2} \geq L$ holds.
- As n is in position 3, condition $p_{n} \leq \frac{C_{m}^{*}}{3}$ holds.

$L P T$ revisited: $2 m+2 \leq n \leq 3 m$ (LP formulation)

- We associate non-negative variables p_{n} and sump with p_{n} and $\sum_{j=1}^{n} p_{j}$.
- We associate non-negative variables c_{1}, c_{2}, l, opt with C_{1}, C_{2}, L and C_{m}^{*}.
- The following LP model (for given m) holds:

$$
\begin{align*}
\operatorname{minimize} \quad & \text { opt } \tag{1}\\
& -m \cdot \text { opt }+ \text { sump } \leq 0 \tag{2}\\
& 3 \cdot p_{n}-c_{1} \leq 0 \tag{3}\\
& l-c_{1} \leq 0 \tag{4}\\
& (m-2) l-c_{2} \leq 0 \tag{5}\\
& c_{1}+l+p_{n}+c_{2}-\text { sump }=0 \tag{6}\\
& l+p_{n}=1 \tag{7}\\
& p_{n}-\frac{\text { opt }}{3} \leq 0 \tag{8}\\
& p_{n}, \text { sump }, c_{1}, c_{2}, l, \text { opt } \geq 0 \tag{9}
\end{align*}
$$

$L P T$ revisited: $2 m+2 \leq n \leq 3 m$ (LP formulation)

- The minimization of the objective function (1), after setting w.l.o.g $L P T$ solution value to 1 (constraint (7)), provides an upper bound on the performance ratio of the $L P T$ rule.
- Constraint (2): $-m \cdot$ opt + sump ≤ 0 corresponds to bound $C_{m}^{*} \geq \frac{\sum_{j=1}^{n} p_{j}}{m}$.
- Constraint (3): $3 \cdot p_{n}-c_{1} \leq 0$ states that the value of c_{1} is at the least $3 p_{n}$, since 3 jobs with proc. time $\geq p_{n}$ are assigned to a non critical machine.
- Constraint (4): $l-c_{1} \leq 0$ states that the compl. time of the critical machine before the last job is loaded is less than the compl. time of the other machine processing at least three jobs.
- Constraint (5): $(m-2) l-c_{2} \leq 0$ fulfills the list scheduling requirement.
- Constraint (6): $c_{1}+l+p_{n}+c_{2}-s u m p=0$ guarantees that variable sump represents $\sum_{j=1}^{n} p_{j}$
- Constraint (8) corresponds to condition $p_{n} \leq \frac{C_{m}^{*}}{3}$.
- Constraints (9) state that all variables are non-negative.

$L P T$ revisited: $2 m+2 \leq n \leq 3 m$ (LP formulation)

- The proposed LP model is continuous and contains just 6 variables and 7 constraints for any fixed m.
- By strong duality (and a little bit of reverse engineering) it is possible to show that in the optimal solution, for any $m \geq 5$, the variables values are as follows

$$
\begin{array}{lr}
p_{n}=\frac{m-1}{4 m-5} ; & \text { sump }=\frac{3 m(m-1)}{4 m-5} ; \\
c_{1}=\frac{3(m-1)}{4 m-5} ; & c_{2}=\frac{(m-2)(3(m-1)-1)}{4 m-5} ; \\
l=\frac{3(m-1)-1}{4 m-5} ; & \text { opt }=\frac{3(m-1)}{4 m-5} .
\end{array}
$$

- Correspondingly, we have $\frac{C_{m}^{L P T}}{C_{m}^{*}} \leq 1 /$ opt $=\frac{4 m-5}{3(m-1)}=\frac{4}{3}-\frac{1}{3(m-1)}$.
- Notice that this bound is not tight.

$L P T$ revisited: other subcases

With similar analysis, and sometimes partial enumeration, the following propositions also hold.

- For $3 \leq m \leq 4$ and $2 m+2 \leq n \leq 3 m, L P T$ (with job n critical) has an approximation ratio $\leq \frac{4}{3}-\frac{1}{3(m-1)}$ for $3 \leq m \leq 4$.
- For $n \leq 2 m$ and $m \geq 3, L P T$ has an approximation ratio $\leq\left(\frac{4}{3}-\frac{1}{3(m-1)}\right)$.
- For $m \geq 3$ and $n=2 m+1$, if $L P T$ loads at least three jobs on a machine before the critical job, then it has an approximation ratio $\leq\left(\frac{4}{3}-\frac{1}{3(m-1)}\right)$.

The only case remaining is then related to instances with $n=2 m+1$ where LPT schedules job n only in third position and n is critical.

Improving $L P T$

- Consider a slight algorithmic variation where a set of the sorted jobs is first loaded on a machine and then $L P T$ is applied on the remaining job set.
- Let denote this variant as $\operatorname{LPT}(\mathcal{S})$ where \mathcal{S} represents the set of jobs assigned all together to a machine first.
We consider the following Algorithm 1.

Input: $P_{m} \| C_{\text {max }}$ instance with n jobs and $m \geq 3$ machines.

- Apply LPT yielding a schedule with makespan z_{1}.
- Apply $L P T^{\prime}=L P T\left(\left\{j^{\prime}\right\}\right)$ with solution value z_{2}.
- Return $\min \left\{z_{1}, z_{2}\right\}$.

In practice, this algorithm applies $L P T$ first and then re-applies $L P T$ after having loaded first on a machine its critical job j^{\prime}.

Improving $L P T$

Whenever both $L P T$ and $L P T^{\prime}$ are applied, the following subcases need to be considered
(1) $n=j^{\prime}=2 m+1$ with subcases
(1) $p_{2 m+1} \geq p_{1}-p_{m}$.
(2) $p_{2 m+1}<p_{1}-p_{m}$.
(2) $n \geq i>j^{\prime}=2 m+1$ with i critical in $L P T^{\prime}$.
(3) $n>j^{\prime}=2 m+1 \geq i$ with i critical in $L P T^{\prime}$.

We focus here on subcase $1.1\left(n=j^{\prime}=2 m+1\right.$ and $\left.p_{2 m+1} \geq p_{1}-p_{m}\right)$: all other subcases provide with similar analysis approximation ratio not superior to $\frac{4}{3}-\frac{1}{3(m-1)}$.

Handling instances with

$$
n=j^{\prime}=2 m+1 \text { and } p_{2 m+1} \geq p_{1}-p_{m}
$$

- Note that $L P T$ must couple jobs $1, \ldots, m$ respectively with jobs $2 m, \ldots, m+1$ on the m machines before scheduling job $2 m+1$, or else $L P T$ has an approximation ratio $\leq\left(\frac{4}{3}-\frac{1}{3(m-1)}\right)$.
- Hence, the LPT schedule is as follows we denote by $C\left(M_{i}\right)$ the completion time of machine M_{i}

$$
\begin{aligned}
& M_{1}: 1,2 m \rightarrow C\left(M_{1}\right)=p_{1}+p_{2 m} \\
& M_{2}: 2,2 m-1 \rightarrow C\left(M_{2}\right)=p_{2}+p_{2 m-1} \\
& \ldots \\
& M_{m-1}: m-1, m+2 \rightarrow C\left(M_{m-1}\right)=p_{m-1}+p_{m+2} \\
& M_{m}: m, m+1 \rightarrow C\left(M_{m}\right)=p_{m}+p_{m+1}
\end{aligned}
$$

where job $2 m+1$ will be assigned to the machine with minimum completion time.

Handling instances with

$n=j^{\prime}=2 m+1$ and $p_{2 m+1} \geq p_{1}-p_{m}$

$L P T^{\prime}$ can be shown to be as follows

$$
\begin{aligned}
& M_{1}: 2 m+1, m, 2 m \rightarrow C\left(M_{1}\right)=p_{2 m+1}+p_{m}+p_{2 m} \\
& M_{2}: 1,2 m-1 \rightarrow C\left(M_{2}\right)=p_{1}+p_{2 m-1} \\
& M_{3}: 2,2 m-2 \rightarrow C\left(M_{3}\right)=p_{2}+p_{2 m-2}
\end{aligned}
$$

$$
\begin{aligned}
& M_{m-1}: m-2, m+2 \rightarrow C\left(M_{m-1}\right)=p_{m-2}+p_{m+2} \\
& M_{m}: m-1, m+1 \rightarrow C\left(M_{m}\right)=p_{m-1}+p_{m+1}
\end{aligned}
$$

with subcases
(1) $L P T^{\prime}$ makespan is on M_{1}.
(2) $L P T^{\prime}$ makespan is on $M_{2}, \ldots M_{m}$.

We focus here on subcase $1\left(L P T^{\prime}\right.$ makespan is on $\left.M_{1}\right)$: the other subcase provides with similar analysis approximation ratio not superior to $\frac{4}{3}-\frac{1}{3(m-1)}$.

Case $n=j^{\prime}=2 m+1, p_{2 m+1} \geq p_{1}-p_{m}$, $L P T^{\prime}$ makespan on M_{1}

- If $L P T^{\prime}$ is not optimal, then it can be shown that $C_{m}^{*} \geq p_{m-1}+p_{m}$.
- We get the following result.

Proposition
If $p_{2 m+1} \geq p_{1}-p_{m}$ and $L P T^{\prime}$ makespan is equal to $p_{2 m+1}+p_{m}+p_{2 m}$, then the proposed algorithm has an approximation ratio not superior to $\frac{7}{6}$.

- Proof: again we employ Linear Programming to evaluate the performance of $L P T^{\prime}$. We consider non-negative variables x_{j} associated with $p_{j}(j=1, \ldots, n)$ and a positive parameter $O P T>0$ associated with C_{m}^{*}.

Case $n=j^{\prime}=2 m+1, p_{2 m+1} \geq p_{1}-p_{m}$, $L P T^{\prime}$ makespan on M_{1}

The LP model is

$$
\begin{align*}
\operatorname{maximize} & x_{2 m+1}+x_{m}+x_{2 m} \tag{10}\\
\text { subject to } & x_{m-1}+x_{m} \leq O P T \tag{11}\\
& x_{2 m-1}+x_{2 m}+x_{2 m+1} \leq O P T \tag{12}\\
& x_{2 m+1}-\left(x_{1}-x_{m}\right) \geq 0 \tag{13}\\
& x_{1}-x_{m-1} \geq 0 \tag{14}\\
& x_{m-1}-x_{m} \geq 0 \tag{15}\\
& x_{m}-x_{m+1} \geq 0 \tag{16}\\
& x_{m+1}-x_{2 m-1} \geq 0 \tag{17}\\
& x_{2 m-1}-x_{2 m} \geq 0 \tag{18}\\
& x_{2 m}-x_{2 m+1} \geq 0 \tag{19}\\
& x_{1}, x_{m-1}, x_{m}, x_{m+1}, x_{2 m-1}, x_{2 m}, x_{2 m+1} \geq 0 \tag{20}
\end{align*}
$$

Case $n=j^{\prime}=2 m+1, p_{2 m+1} \geq p_{1}-p_{m}$, $L P T^{\prime}$ makespan on M_{1}

- The objective function value (10) represents an upper bound on the worst case performance of the algorithm.
- Constraints (11)-(12) correspond to $C_{m}^{*} \geq p_{m-1}+p_{m}$ and $C_{m}^{*} \geq p_{2 m-1}+p_{2 m}+p_{2 m+1}$.
- Constraint (13) corresponds to the initial assumption $p_{2 m+1} \geq p_{1}-p_{m}$.
- Constraints (14)-(19) state that the considered relevant jobs are sorted by non-increasing processing times.
- Constraints (20) indicate that the variables are non-negative.
- Further viable constraints where not necessary to reach the required result. By setting $O P T=1$, the cost function has value $\frac{7}{6}$.

Improving $L P T$: wrap up

Putting things together, the following theorem holds

Theorem
The proposed algorithm has an approximation ratio not superior to $\frac{4}{3}-\frac{1}{3(m-1)}$ for $m \geq 3$.

From approximation to heuristics

- W.r.t. the worst-case analysis for $m \geq 3$, the relevant subcase was the one with $p_{2 m+1} \geq p_{1}-p_{m}$ and $L P T^{\prime}$ required to schedule $p_{2 m+1}$ initially and then apply list scheduling first to the sorted jobset p_{1}, \ldots, p_{m} according to $L P T$ and then to the sorted jobset $p_{m+1}, \ldots, p_{2 m}$ always according to $L P T$.
- We propose then an alternative approach that splits the sorted job set in tuples of m consecutive jobs $(1, \ldots, m ; m+1, \ldots, 2 m$; etc.) and sorts the tuples in non-increasing order of the difference between the largest job and the smallest job in the tuple. Then a list scheduling is applied to the set of sorted tuples. We denote this approach as $S L A C K$.

From approximation to heuristics

The $S L A C K$ heuristic:

Input: $P_{m} \| C_{\text {max }}$ instance m machines and n jobs with processing times $p_{j}(j=1, \ldots, n)$.

- Sort items by non-increasing p_{j}.
- Consider tuples $1, \ldots, m ; m+1, \ldots, 2 m ; \ldots ; n-m+1, \ldots, n$ (if n / m is not integer, add dummy jobs with null proc. time in the last tuple).
- For each tuple, compute the associated slack
$p_{1}-p_{m} ; p_{(m+1)}-p_{2 m} ; \ldots ; p_{(n-m+1)}-p_{n}$.
- Sort tuples by non-increasing slack.
- Apply List Scheduling to this job ordering and return the solution.

SLACK heuristic

- Worst-case example for $L P T$ with 3 machines, 7 jobs $\longrightarrow[5,5,4,4,3,3,3]$.
- By adding 2 dummy jobs, we get $[5,5,4,4,3,3,3,0,0$] that is $[5,5,4],[4,3,3],[3,0,0]$.
- Sorting tuples by non-increasing slack, we have $[3,0,0],[5,5,4],[4,3,3]$.
- Applying list scheduling, we get $C(1)=10, C(2)=9, C(3)=8$ hence $C_{\max }^{S L A C K}=10$.

Since the construction and sorting of the tuples can be performed in $\mathcal{O}(n+m \log m)$, the running time of SLACK is $\mathcal{O}(n \log n)$ due to the initial jobs $L P T$ sorting.

Computational testing

We compared $S L A C K$ to $L P T$ on benchmark literature instances (Iori, Martello 2008)

- Two classical classes of instances from literature are considered: uniform instances (França et al. 1994) and non-uniform instances (Frangioni et al. 2004).
- In uniform instances the processing times are integer uniformly distributed in the range $[a, b]$. In non-uniform instances, 98% of the processing times are integer uniformly distributed in $[0.9(b-a), b]$ while the remaining ones are uniformly distributed in $[a, 0.2(b-a)]$. For both classes, we have $a=1 ; b=100,1000,10000$.
- For each class, the following values were considered for the number of machines and jobs: $m=5,10,25$ and $n=10,50,100,500,1000$.
- For each pair (m, n) with $m<n, 10$ instances were generated for a total of 780 instances.

Computational testing

			SLACK wins		draws		$L P T$ wins	
$[a, b]$	m	Instances	$\#$	$(\%)$	$\#$	$(\%)$	$\#$	$(\%)$
	5	50	31	(62.0)	16	(32.0)	3	(6.0)
$1-100$	10	40	32	(80.0)	8	(20.0)	0	(0.0)
	25	40	23	(57.5)	17	(42.5)	0	(0.0)
$1-1000$	5	50	39	(78.0)	10	(20.0)	1	(2.0)
	10	40	40	(100.0)	0	(0.0)	0	(0.0)
	25	40	27	(67.5)	12	(30.0)	1	(2.5)
	5	50	39	(78.0)	10	(20.0)	1	(2.0)
	10	40	40	(100.0)	0	(0.0)	0	(0.0)
	25	40	28	(70.0)	10	(25.0)	2	(5.0)
			299	(76.7)	83	(21.3)	8	(2.0)

Table: $P_{m} \| C_{\max }$ non uniform instances.

Computational testing

			SLACK wins		draws		LPT wins	
$[a, b]$	m	Instances	$\#$	$(\%)$	$\#$	$(\%)$	$\#$	$(\%)$
	5	50	12	(24.0)	37	(74.0)	1	(2.0)
$1-100$	10	40	14	(35.0)	20	(50.0)	6	(15.0)
	25	40	10	(25.0)	29	(72.5)	1	(2.5)
	5	50	32	(64.0)	15	(30.0)	3	(6.0)
$1-1000$	10	40	27	(67.5)	5	(12.5)	8	(20.0)
	25	40	24	(60.0)	12	(30.0)	4	(10.0)
	5	50	36	(72.0)	12	(24.0)	2	(4.0)
$1-10000$	10	40	37	(92.5)	0	(0.0)	3	(7.5)
	25	40	22	(55.0)	11	(27.5)	7	(17.5)
Overall			214	(54.9)	141	(36.1)	35	(9.0)

Table: $P_{m} \| C_{\max }$ uniform instances.

Computational testing

- $S L A C K$ shows up to be clearly superior to $L P T$: on 780 benchmark literature instances, $S L A C K$ wins 513 times, ties 224 times and loses 43 times only.
- $S L A C K$ shows up to be competitive also to other similar state-of-the-art heuristics. It it is clearly superior to COMBINE (Lee and Massey 1988) while it is slightly inferior to $L D M$ (Karmarkar and Karp 1982) though being more than an order of magnitude faster.
- By adding a simple neighborhood search (NS) procedure in cascade, SLACK + NS becomes already superior to LDM still being more than an order of magnitude faster.

Conclusions

- We discussed how non standard ILP modeling can be successfully applied to derive improved approximation results.
- We considered problem $P_{m} \| C_{m a x}$ and revisited the $L P T$ rule.
- By means of Linear Programming we improved Graham's bound from $\frac{4}{3}-\frac{1}{3 m}$ to $\frac{4}{3}-\frac{1}{3(m-1)}$ for $m \geq 3$.
- By similar analysis, a linear time algorithm for problem $P 2 \| C_{\max }$ with a $13 / 12$ approximation ratio can be derived;
- From the approximation analysis, we derived a simple $O(n \log n)$ heuristic procedure that drastically improves upon the performances of $L P T$.
- We believe that the proposed LP-based analysis can be successfully applied in approximation theory as a valid alternative to formal proof systems based on analytical derivation.

References

- B. Chen, "A note on LPT scheduling", Operation Research Letters, 14,:139-142, 1993.
- E.G. Coffman, R. Sethi, "A generalized bound on LPT sequencing", Revue Francaise d'Automatique Informatique, Recherche Operationelle Supplement 10, 17-25, 1976.
- F. Della Croce, R. Scatamacchia, "The Longest Processing Time rule for identical parallel machines revisited", Journal of Scheduling, 23, 163-176, 2020.
- F. Della Croce, R. Scatamacchia, V. T'Kindt, "A tight linear 13/12-approximation algorithm for the $P 2 \| C_{\max }$ problem", Journal of Combinatorial Optimization, 38, 608-617, 2019.
- R.L. Graham, "Bounds on multiprocessors timing anomalies", SIAM Journal on Applied Mathematics 17, 416-429, 1969.
- N. Karmarkar, R.M. Karp, "The differencing method of set partitioning", Technical Report UCB/CSD 82/113, University of California, Berkeley, 1982.
- C.Y. Lee, J.D. Massey, "Multiprocessor scheduling: Combining LPT and MULTIFIT", Discrete Applied Mathematics, 20, 233-242, 1988.

