ELEMENTS OF SCHEDULING

Jan Karel Lenstra
Centrum Wiskunde & Informatica, Amsterdam

David Shmoys
Cornell University, Ithaca, NY

Scheduling seminar, March 31, 2021
schedulingseminar.com

HENRY LAURENCE GANTT
(1861-1919)

Henry Laurence Gantt was an industrial engineer and a disciple of Fred-
erick W. Taylor. He developed his now famous charts during World War I
to compare production schedules with their realizations. Gantt discussed
the underlying principles in his paper “Efficiency and Democracy,” which
he presented at the annual meeting of the American Society of Mechanical
Engineers in 1918. The Gantt charts currently in use are typically a simpli-
fication of the originals, both in purpose and in design.

Scheduling
Theory, Algorithms,

and Systems
Second Edition

Michael Pinedo

New York University

Prentice

Hall

Prentice Hall
Upper Saddle River, New Jersey 07458

Selmer M. Johnson

= 2-machine flow shop in O(n log n) time (1954)
= 42-city TSP, with Dantzig & Fulkerson (1954)
" generating permutations by adjacent transpositions (1963)

Wayne L. Smith

= 1[|ZC; by SPT, 1||Zw;C; by ratio rule (1956)

- SRR
3 ..ulmmm >

1o 1.
) s

Early 1970’s

operations research
» single machine, flow shop, job shop
= classification scheme (Conway, Maxwell & Miller 1967)

computer science
= single machine, parallel machines
= complexity theory (Cook 1971, Karp 1972)

mathematics

» performance bounds for LS and LPT on
identical parallel machines (Graham 1966, 1969)

NATO ASI on Combinatorial Programming, Versailles, Sep. 1974
" Gene Lawler: QAP; computational complexity

Workshop on Integer Programming, Bonn, September 1975
» complexity results with Peter Brucker

Scheduling conference, Orlando, February 1976
* Marshall Fisher: Lagrangian relaxation
» Ed Coffman, Mike Garey, Dave Johnson: bin packing

Symposium on Algorithms & Complexity, Pittsburgh, April 1976
» Dick Karp: probabilistic analysis
= Nicos Christofides: 3/2-approximation for TSP with A#

D077, Vancouver, August 1977
» scheduling survey of Graham, Lawler, L, Rinnooy Kan

S.C. Graves et al., Eds., Handbooks in OR & MS, Vol. 4
© 1993 Elsevier Science Publishers B.V. All rights reserved.

Chapter 9

Sequencing and Scheduling: Algorithms and
Complexity

Eugene L. Lawler
University of California, Berkeley, CA, U.S.A.

Jan Karel Lenstra

Eindhoven University of Technology, Eindhoven, The Netherlands and
CWI, Amsterdam, The Netherlands

Alexander H.G. Rinnooy Kan

Erasmus University, Rotterdam, The Netherlands

David B. Shmoys

Cornell University, Ithaca, NY, U.S. A.

Sequencing and scheduling as a research area is motivated by questions that
arise in production planning, in computer control, and generally in all situa-
tions in which scarce resources have to be allocated to activities over time. In
this survey, we concentrate on the area of deterministic machine scheduling.
We review complexity results and optimization and approximation algorithms
for problems involving a single machine, parallel machines, open shops, flow
shops and job shops. We also pay attention to two extensions of this area:
resource-constrained project scheduling and stochastic machine scheduling.

R L

i

7/,

T m o,

22 Wi
L

g

it

o i
E/ ‘

~)

Wiley-Interscience Series in Discrete Mathematics and Optimization

Combinatorial
Optimization

William J. Cook

William H. Cunningham
William R. Pulleyblank
Alexander Schrijver

elementsofscheduling.nl

Preliminaries

Scheduling problems

Algorithms and complexity

Single machine

Minmax criteria

Weighted sum of completion times

Parallel machines

Minmax criteria, no preemption

Multi-operation models
Open shops

More scheduling

Elements of Scheduling

collected and edited by Jan Karel Lenstra & David Shmoys

with contributions by Eugene Lawler, Charles Martel, Michael Pinedo, Maurice Queyranne,
Alexander Rinnooy Kan, Andreas Schulz, Marc Uetz, David Williamson & Gerhard Woeginger

)

elementsofscheduling.nl
Ilustration: Emile Aarts, The job shop scheduling problem (1997)

P|prec,p;j=1|Cpax=3 (L, Rinnooy Kan 1978)
R||Crax<?2 (L, Shmoys, Tardos 1990)

O,E]||Crhaxs4 (Williamson, Hall, Hoogeveen, Hurkens,
L, Sevast’janov, Shmoys 1997)

O z;éz—j MM,W 2 (585 Uk T LT

. 7@}@_ wA Ll Laoee _‘,:3% ;.u_ﬁjﬁ_cl, o

o|B|y: shorthand notation or research program?

Challenges and developments

» analyze behavior of methods used in practice
* online methods
" learning from data

Looking forward

= evolving settings for scheduling in practice
= known unknowns
" learning from data

Data-driven scheduling & resource allocation

= cloud computing (scheduling & resource allocation)
= data center management (scheduling traffic in network)
* ride-share resource allocation

Models of an unknown future

* online analysis
= arrivals over time
= clairvoyance vs. non-clairvoyance
= worst-case viewpoint

* stochastic models
= queueing models (for arrivals)
= probabilistic resource requirements
= average-case (or w.h.p.) viewpoint

A very simple example

" 1|pmtn|X(;
= Shortest Processing Time (SPT) rule optimal offline (no premptions)
= but suppose the processing time is revealed only by running job
= stochastic analysis
= each job has a random variable processing time p; (with ICR)

» realization of random variable
= optimal policy is to schedule in nondecreasing E[p;] order

= nonclairvoyant analysis
= each job has an unknown processing time
» adversary determines processing times knowing algorithm
* but possibly not knowing random coin tosses used by algorithm
= round robin algorithm is 2-competitive
* no (randomized) c-competitive algorithm exists with ¢ < 2
* [Motwani, Phillips, Torng 1994] [S, Wein, Williamson 1995]

A very simple example (continued)

* 1[pmtn|XZC; [Kumar, Purohit & Svitkina NIPS 2018]

if there exists means to exactly predict p; then online = offline

machine learning provides such a mechanism in many settings
but predictions are noisy (and worse)

simple algorithm is Shortest Predicted Processing Time

SPPT finds optimal schedule if predictions are perfect

but can be arbitrarily bad if not

Question: how do we hedge against inaccurate predictions?

Step 1: bound performance of SPPT as a function of prediction error
= Let m be the total prediction error for an input with n jobs
= SPPT is a (1+2m/n)-competitive algorithm
Step 2: blend SPPT and round robin (like processor sharing)
» if an a-fraction of time run SPPT and a (1-a)-fraction run round robin
* and set a so that a(1+2m/n) = 2(1-a) obtain constant competitive ratio

A (much) more intricate example
| Lattanzi, Lavastida, Moseley, & Vassilvitskii 2020]

u R’pij S {pj7 00}7 Tj ‘CmaX

= consider an online arrival model with m machines

= each job has processing requirement p;

* but can be feasibly assigned to specified subset of machines
* [L,S, & Tardos] offline 2-approximation algorithm (w/o 7;)

= [Azar, Naor & Rom 1995] O(log m)-approximation algorithm
= no online algorithm can have better competitive ratio

= Insight: algorithm uses succinct prediction about input
(more sophisticated than the input data)

» Predicted quantity: weight w; for each machine i
= Weights can be learned by an online algorithm

A (much) more intricate example (continued)
| Lattanzi, Lavastida, Moseley, & Vassilvitskii 2020]

R|pi; € {pj, o0}, 7j|Crmax

= Step 1: algorithm computes online fractional assignment

= let r be max(predicted weight/“correct” weight)

= online algorithm is O(log r)-competitive

* intuition behind weights - fraction of job j assigned to machine i is
ratio of machine i’s weight to total weight of feasible machines forj

= Step 2: algorithm rounds fractional assignment to {0,1}
= online algorithm is O((loglog m)3)-competitive
= algorithm is randomized and achieves makespan bound w.h.p.
= (Can prove there exist weights for which proportional
assignment has makespan within constant factor of optimum
= Also give online algorithm to “learn” weights

* Bottom line: O((loglog m)3log r) = o(log m) (lower bound)

A hint of a final example [Gaitonde & Tardos]

* builds on tradition of stochastic scheduling (queueing)

* and recent work on learning in games

" queues at routers compete for servers in rounds

= packets not sent (successfully) today, will be sent tomorrow

Model of Learning in a Queuing System

; . ueues servers
* Queue i gets new packets with a 9

Bernoulli process with rate A; o0 .\\
* Server j succeeds at serving a packet A

iy (o

with probability y;

* Each time step: each queue can send B
one packet to one of the serverstotry @ @@®

to get serviced
* Server can process at most one packet

and unserved packets get returned to ’ . Failed
queue

* Queues use no-regret learning to ®
selfishly get the best service

Main Result: If servers have capacity for twice the arrival rate,
and queues use no-regret learning, then queues stay bounded

Some concluding thoughts

* new models are needed for data-driven decision-making

= exciting interplay with machine learning

* bridges between deterministic and stochastic scheduling

= new opportunities for theory to guide and learn from practice

