
ELEMENTS	OF	SCHEDULING

Jan	Karel	Lenstra
Centrum	Wiskunde	&	Informatica,	Amsterdam

David	Shmoys
Cornell	University,	Ithaca,	NY

Scheduling	seminar,	March	31,	2021
schedulingseminar.com

Selmer	M.	Johnson

§ 2-machine	flow	shop	in	O(n log	n)	time	(1954)
§ 42-city	TSP,	with	Dantzig	&	Fulkerson	(1954)
§ generating	permutations	by	adjacent	transpositions	(1963)

Wayne	L.	Smith

§ 1||Σ𝐶! by SPT, 1||Σ𝑤!𝐶! by	ratio	rule	(1956)

Early	1970’s

operations	research
§ single	machine,	flow	shop,	job	shop
§ classification	scheme (Conway,	Maxwell	&	Miller	1967)

computer	science
§ single	machine,	parallel	machines
§ complexity	theory (Cook	1971,	Karp	1972)

mathematics
§ performance	bounds for	LS	and	LPT	on
identical	parallel	machines	(Graham	1966,	1969)

NATO	ASI	on	Combinatorial	Programming,	Versailles,	Sep.	1974
§ Gene	Lawler:	QAP;	computational	complexity

Workshop	on	Integer	Programming,	Bonn,	September	1975
§ complexity	resultswith	Peter	Brucker

Scheduling	conference,	Orlando,	February	1976
§ Marshall	Fisher:	Lagrangian	relaxation
§ Ed	Coffman,	Mike	Garey,	Dave	Johnson:	bin	packing

Symposium	on	Algorithms	&	Complexity,	Pittsburgh,	April	1976
§ Dick	Karp:	probabilistic	analysis
§ Nicos Christofides:	3/2-approximation	for	TSP	with	Δ≠

DO77,	Vancouver,	August	1977
§ scheduling	survey of	Graham,	Lawler,	L,	Rinnooy Kan

elementsofscheduling.nl

Preliminaries Multi-operation	models
Scheduling	problems Open	shops
Algorithms	and	complexity Flow	shops
Single	machine Job	shops
Minmax	criteria More	scheduling
Weighted	sum	of	completion	times Stochastic	scheduling	models
Weighted	number	of	late	jobs Scheduling	in	practice
Total	tardiness	and	beyond
Parallel	machines
Minsum	criteria
Minmax	criteria,	no	preemption
Minmax	criteria	with	preemption
Precedence	constraints

P|prec,𝑝!=1|𝐶"#$≤3 (L,	Rinnooy Kan	1978)

R||𝐶"#$≤2 (L,	Shmoys,	Tardos 1990)

O,F,J||𝐶"#$≤4 (Williamson,	Hall,	Hoogeveen,	Hurkens,
L,	Sevast’janov,	Shmoys 1997)

.	.	.

α|β|γ:	shorthand	notation or	research	program?

Challenges	and	developments

§ analyze	behavior	of	methods	used	in	practice
§ online	methods
§ learning	from	data

Looking	forward

§ evolving	settings	for	scheduling	in	practice
§ known	unknowns
§ learning	from	data

Data-driven	scheduling	&	resource	allocation

§ cloud	computing	(scheduling	&	resource	allocation)
§ data	center	management	(scheduling	traffic	in	network)
§ ride-share	resource	allocation

Models	of	an	unknown	future

§ online	analysis
§ arrivals	over	time
§ clairvoyance	vs.	non-clairvoyance	
§ worst-case	viewpoint

§ stochastic	models
§ queueing	models	(for	arrivals)
§ probabilistic	resource	requirements
§ average-case	(or	w.h.p.)	viewpoint

A	very	simple	example

§ 1|pmtn|Σ𝐶!
§ Shortest	Processing	Time	(SPT)	rule	optimal	offline	(no	premptions)
§ but	suppose	the	processing	time	is	revealed	only	by	running	job
§ stochastic	analysis

§ each	job	has	a	random	variable	processing	time	𝒑𝒋 (with	ICR)
§ realization	of	random	variable
§ optimal	policy	is	to	schedule	in	nondecreasing	E[𝒑𝒋] order

§ nonclairvoyant analysis
§ each	job	has	an	unknown	processing	time
§ adversary	determines	processing	times	knowing	algorithm
§ but	possibly	not	knowing	random	coin	tosses	used	by	algorithm
§ round	robin	algorithm	is	2-competitive	
§ no	(randomized)	c-competitive	algorithm	exists	with	c	<	2	
§ [Motwani,	Phillips,	Torng 1994]	[S,	Wein,	Williamson	1995]

A	very	simple	example		(continued)	

§ 1|pmtn|Σ𝐶! [Kumar,	Purohit	&	Svitkina NIPS	2018]
§ if there exists means	to exactly predict 𝑝! then	online	=	offline
§ machine	learning	provides	such	a	mechanism	in	many	settings
§ but	predictions	are	noisy	(and	worse)
§ simple	algorithm	is	Shortest	Predicted	Processing	Time
§ SPPT	finds	optimal	schedule	if	predictions	are	perfect
§ but	can	be	arbitrarily	bad	if	not
§ Question:	how	do	we	hedge	against	inaccurate	predictions?
§ Step	1:	bound	performance	of	SPPT	as	a	function	of	prediction	error

§ Let	m	be	the	total	prediction	error	for	an	input	with	n	jobs
§ SPPT	is	a	(1+2m/n)-competitive	algorithm

§ Step	2:	blend	SPPT	and	round	robin	(like	processor	sharing)	
§ if		an	𝛼-fraction	of	time	run	SPPT	and	a	(1-𝛼)-fraction	run	round	robin
§ and	set	𝛼 so	that		𝛼(1+2m/n)	=	2(1-𝛼)	obtain	constant	competitive	ratio

A	(much)	more	intricate	example	
[Lattanzi,	Lavastida,	Moseley,	&	Vassilvitskii 2020]	

§
§ consider	an	online	arrival	model	with	mmachines
§ each	job	has	processing	requirement	𝑝!
§ but	can	be	feasibly	assigned	to	specified	subset	of	machines
§ [L,S,	&	Tardos]	offline	2-approximation	algorithm	(w/o	𝑟!)
§ [Azar,	Naor &	Rom	1995]	O(log	m)-approximation	algorithm
§ no	online	algorithm	can	have	better	competitive	ratio
§ Insight:	algorithm	uses	succinct	prediction	about	input				
(more	sophisticated	than	the	input	data)

§ Predicted	quantity:	weight	𝑤, for	each	machine	i
§ Weights can be learned by an online	algorithm

<latexit sha1_base64="HFf9fBLVEWrfOojvZQxXoYxhhBs=">AAACFnicbZC7TsMwFIadcivlVmBksaiQGEqVIASMFV0YC6IXqYkix3Vat44T2Q6iSvMULLwKCwMIsSI23ga3zQAtv2Tp83/OkX1+L2JUKtP8NnJLyyura/n1wsbm1vZOcXevKcNYYNLAIQtF20OSMMpJQ1HFSDsSBAUeIy1vWJvUW/dESBryOzWKiBOgHqc+xUhpyy2e3I4jN6GDFNqUQzuJ3AEsa/TVCNppGQp9H8Oam9gBekjdYsmsmFPBRbAyKIFMdbf4ZXdDHAeEK8yQlB3LjJSTIKEoZiQt2LEkEcJD1CMdjRwFRDrJdK0UHmmnC/1Q6MMVnLq/JxIUSDkKPN0ZINWX87WJ+V+tEyv/0kkoj2JFOJ495McMqhBOMoJdKghWbKQBYUH1XyHuI4Gw0kkWdAjW/MqL0DytWOcV8+asVL3K4siDA3AIjoEFLkAVXIM6aAAMHsEzeAVvxpPxYrwbH7PWnJHN7IM/Mj5/AAZ/nqc=</latexit>

R|pij 2 {pj ,1}, rj |Cmax

A	(much)	more	intricate	example	(continued)
[Lattanzi,	Lavastida,	Moseley,	&	Vassilvitskii 2020]	

§
§ Step	1:	algorithm	computes	online	fractional	assignment

§ let	r be	max(predicted	weight/“correct”	weight)
§ online	algorithm	is	O(log	r)-competitive
§ intuition	behind	weights	– fraction	of	job	j assigned	to	machine	i is	
ratio	of		machine	i’s	weight	to	total	weight	of	feasible	machines	for	j

§ Step	2:	algorithm	rounds	fractional	assignment	to	{0,1}
§ online	algorithm	is	O((loglog	m)3)-competitive
§ algorithm	is	randomized	and	achieves	makespan bound	w.h.p.

§ Can	prove	there	exist	weights	for	which	proportional	
assignment	has	makespan within	constant	factor	of	optimum

§ Also	give	online	algorithm	to	“learn”	weights
§ Bottom	line:	O((loglog	m)3 log	r)	=	o(log	m)	(lower	bound)

<latexit sha1_base64="HFf9fBLVEWrfOojvZQxXoYxhhBs=">AAACFnicbZC7TsMwFIadcivlVmBksaiQGEqVIASMFV0YC6IXqYkix3Vat44T2Q6iSvMULLwKCwMIsSI23ga3zQAtv2Tp83/OkX1+L2JUKtP8NnJLyyura/n1wsbm1vZOcXevKcNYYNLAIQtF20OSMMpJQ1HFSDsSBAUeIy1vWJvUW/dESBryOzWKiBOgHqc+xUhpyy2e3I4jN6GDFNqUQzuJ3AEsa/TVCNppGQp9H8Oam9gBekjdYsmsmFPBRbAyKIFMdbf4ZXdDHAeEK8yQlB3LjJSTIKEoZiQt2LEkEcJD1CMdjRwFRDrJdK0UHmmnC/1Q6MMVnLq/JxIUSDkKPN0ZINWX87WJ+V+tEyv/0kkoj2JFOJ495McMqhBOMoJdKghWbKQBYUH1XyHuI4Gw0kkWdAjW/MqL0DytWOcV8+asVL3K4siDA3AIjoEFLkAVXIM6aAAMHsEzeAVvxpPxYrwbH7PWnJHN7IM/Mj5/AAZ/nqc=</latexit>

R|pij 2 {pj ,1}, rj |Cmax

A	hint	of	a	final	example	[Gaitonde	&	Tardos]	

§ builds	on	tradition	of	stochastic	scheduling	(queueing)
§ and	recent	work	on	learning	in	games
§ queues	at	routers	compete	for	servers	in	rounds		
§ packets	not	sent	(successfully)	today,	will	be	sent	tomorrow

Main	Result:	If	servers	have	capacity	for	twice	the	arrival	rate,	
and	queues	use	no-regret	learning,	then	queues	stay	bounded

Some	concluding	thoughts

§ new	models	are	needed		for	data-driven	decision-making
§ exciting	interplay	with	machine	learning
§ bridges	between	deterministic	and	stochastic	scheduling
§ new	opportunities	for	theory	to	guide	and	learn	from	practice

