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Motivation for Model (no predictions yet)
• Scheduling with uncertainty is well studied
• Stochastic 
• Robust
• Multistage
• etc.

• Most uncertainty deals with jobs
• What about machines?
• Application:  group jobs in data center – before knowing where 

they will be scheduled
• Application: pack items into boxes -- before knowing what 

container/truck they will be placed in



Scheduling with machine uncertainty 
[SZ18]
• Input: 

• Upper bound M on the number of machines

• n jobs, with processing times pj

• Without knowing the number of machines, partition jobs into M bags

• Then learn the number of machines m

• Schedule the bags on the m machines to minimimze makespan (or 
some other objective)



Scheduling with machine uncertainty 
[SZ18]
• Evaluation

• Alg(m) - algorithm performance on m machines

• OPT(m) – Optimal algorithm that does not need to form bags in the first stage

• Want to minimize Maxm (Alg(m)/OPT(m))

• We called it the robust ratio, but we will be using robust to mean something 

slightly different

• Need to form the bags so as to do well with all possible m
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Scheduling with machine uncertainty 
[SZ18]

• 5/3 approximation in general

• Better for special cases, unit jobs and infinitely divisible jobs

• Consider other objectives too



Generalization to speeds [EHMNSS21]

• Input

• m machines, with unknown speeds

• n jobs, with processing times pj

• Without knowing the speeds of machines, partition the jobs into m bags

• Then learn the machine speeds si

• Schedule the bags on the m machines to minimimze makespan (or some 

other objective)



Two level scheduling 
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Results from Eberle et. al.



Discrete jobs – 2 robust 

• Don’t know speeds, but assume for now that ∑𝑠* = ∑𝑝+
• Put jobs in bags via LPT (Longest processing time)
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Discrete jobs – 2 robust 

• Don’t know speeds, but assume for now that ∑𝑠* = ∑𝑝+
• Put jobs in bags via LPT (Longest processing time)
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• Large (1 per bag) jobs are annoying
• b is the size of the largest bag with at least 2 jobs
• Ignoring  Large jobs, smallest and largest bag are 

within a factor of 2



Learn machine speeds

• Say machine speeds are 1,2,5
• Can think of machine of speed s as a machine of speed 1, but with capacity 

s

• Will actually think of machines as having size 2si, and will pack bags on 
machines using LPT



Everything fits

• Suppose the first k bags fit
• Suppose bag k+1 of size T does not fit

• Let smallest bag be of size w, 𝑤 ≥ ,
-

• The (m-k) unpacked bags must have size at least

𝑈 ≥ 𝑚 − 𝑘 − 1 𝑤 + 𝑇 ≥ 𝑚 − 𝑘 − 1
𝑇
2
+ 𝑇

• The k packed bags must have size 
𝑃 ≥ 𝑘𝑇



Everything fits (cont)

• Since we inflated the machines by a factor of 2 and everything fits in 
aggregate, we must have at least 2U + P free space.

• Plugging in
2𝑈 + 𝑃

≥ 2 (𝑚 − 𝑘 − 1 𝑤 + ,
-
+ 𝑇) + kT

≥ 𝑚 − 𝑘 − 1 𝑇 + 2𝑇 + 𝑘𝑇
≥ 𝑚 + 1 𝑇

• So at least one machine can fit the bag of size T.



New Topic -- Algorithms with Predictions

• General idea of getting away from worst case analysis
• For an online algorithm, you have some predictions about the data
• If the predictions are accurate, you’d like to do as well as the offline 

algorithm
• If the predictions are not accurate, you’d like to do as well as the 

online algorithm
• You don’t know if the predictions are accurate
• You need one algorithm for both cases
• You can also consider incorporating measures of the prediction 

accuracy



(Aside) What do we want from Predictions

• Guiding principals 
• Computable based on prior job traces
• Predictions should be reasonably sized
• Should be robust to error or inconsequential changes to the input 

• Focus on quantity to predict 
• Independent of learning algorithm used to construct the prediction  
• Focus on the worst case with access to the prediction



Some Early Papers

• Caching [Lykouris and Vassilvitskii 2018] 
• Ski Rental [Purohit et al 2018] 
• Non-clairvoyant scheduling [Purohit et al 2018]



Algorithms with predictions are a hot area

• Workshop at STOC

• Previous talk in this workshop by Ben Moseley, just on 

scheduling algorithms with predictions

• Webpage [Lindermayr, Megow]



Algorithms-with-predictions.github.io



Scheduling with speed predictions
• Input: 

• n jobs with processing time 𝑝!
• m machines with unknown speed 𝑠" > 0

• A prediction of machine speeds 𝑠̂" > 0

• Reminder:
• The processing time for job 𝑗 on machine 𝑖 is ⁄𝑝! 𝑠"

• Model
• Partition the jobs into m (possibly empty) bags only knowing speed predictions 𝑠̂"
• Learn the speeds 𝑠̂" .  Schedule bags on machines

• Objective function: Minimize the makespan



Evaluation of Algorithms 

• For any speed realization S, 
• 𝐴𝐿𝐺# is makespan of our algorithm

• 𝑂𝑃𝑇# is optimal makespan that knows S in advance (no bags)

• Define

• 𝛼 = $%&!"#!
'()!"#!

is the consistency (performance with good predictions)

• β = 𝑚𝑎𝑥#
$%&!
'()!

is  the robustness (performance with bad predictions)



Our results



Consider prediction error

• We define the prediction error 𝜂 = 𝑚𝑎𝑥!∈[,]
./0{3̂$,3$}
.!6{3̂$,3$}

to be the maximum 

ratio between the true speed and the predicted speed, or vice versa.

• We propose an algorithm that achieves the following result:

min{𝜂7 (1+𝛼), (2 + 2/𝛼)}-approximation 

for any constants 𝛼 ∈ (0,1),  where 𝜂 ≥ 1 is the prediction error.

• (1+𝛼)-consistent , (2 + 2/𝛼)-robust



Cannot trust the predictions blindly

• Consider  2m-1 equal size jobs
• 𝑝8 = 𝑝7 = ⋯ = 𝑝7,98 = 1.

• Given the prediction where 1𝑠. = 𝑚, 1𝑠- = ⋯ = 5𝑠/ = 1.

⋮

B!= m

B"=1

B#=1

B!𝑆!=1
If 𝑠8 = 𝑠7 = ⋯ = 𝑠, = 1 then 
the optimal makespan is 2 but 
trust the prediction has 
makespan at least m.



Trade-off between consistency and 
robustness
Theorem: Any (1+𝛼)-consistent algorithm has ~1/𝛼 rate of increase of the 

robustness.

⋮

B#= (m+1)/2

B$ = 1

B!𝑆! = 1

E.g. If the required consistency is 
(m+1)/m then it is feasible to create 
two bags with total processing time 
(m+1) / 2. 

B%= (m+1)/2

Makespan decreases 
to (m+1)/2 



Trade-off between consistency and 
robustness
Theorem: Any (1+𝛼)-consistent algorithm has ~1/𝛼 rate of increase of the 

robustness.

• 2 consistent algorithm can be O(1)-robust

• Partition equally

• 2 consistent (makespan = 2, vs. 1)

• Can show is O(1) robust

• Want to be between follow predictions and partition equally



Preliminaries to Algorithm

• There is a PTAS [HS 88] for scheduling with speeds to minimize 

makespan, so we will focus on the partitioning stage.

• Conceptually, we’d like to think about equal-sized jobs.  

• Single large jobs get in the way of that thinking

• They can basically be handled by observing that both the algorithm 

and OPT has to put them alone (similar to earlier proof)



Useful fact about robustness

• For any partition ℬ = 𝐵), ⋯𝐵* ,

• let p(B) be the total processing time of a bag 𝐵 ∈ ℬ. 

• Let 𝐵 be the number of jobs in a bag 𝐵 ∈ ℬ

• Theorem : The robustness of partition ℬ is at most 𝑚𝑎𝑥 {𝛽, 2}, where

𝛽 =
𝑚𝑎𝑥+∈ℬ, + /0𝑃(𝐵)
𝑚𝑖𝑛+∈ℬ 𝑃(𝐵)

,

is ratio the maximum total processing time of a bag containing at least two jobs to 
the minimum total processing time of a bag.



Bound the robustness

𝐵%

𝐵#

𝛽 ≤ 𝑃(𝐵;)/P(𝐵<)⋮

⋮

𝐵!



Algorithm: Iterative-Partial-Rebalancing 
(IPR)
Partitioning Step:
1. Trust the prediction @𝑆 and partition all of jobs into m bags (~machines)
2. “Remove” singletons
3. While (𝛽 ≥ 4)

1. Add a bag with the minimum total processing time to the “machine” that contains the 
largest non-singleton bag.

2. Rebalance this machine into 2 bags using LPT

4. Output the m bags



Algorithm: Iterative-Partial-Rebalancing 
(IPR)



Analysis Sketch

• Lemma: During the algorithm, the processing time of the bag with 
minimum total processing cannot decrease.

• Lemma: 𝛽 does decrease, using features of LPT (Similar to analysis in 
[EHMNSS21])

• So we gradually increase consistency and decrease robustness
• until… 

• we show that if we require our partition to be (1 + 𝛼)-consistent then 

the robustness is at most (2 + 2 / 𝛼).



Consider Prediction Error

• Recall the prediction error 𝜂 = 𝑚𝑎𝑥*∈[/]
345{8̂!,8!}
3*;{8̂!,8!}

• Theorem: the impact of error is at most 𝜂-.

• 𝜂-(1+𝛼)-consistent , (2 + 2/𝛼)-robust



Experimental Results 



Conclusions

• Incorporate predictions into problem with machine uncertainty
• Other results for special cases
• Algorithm starts with predictions and moves to robustify (in 

partitioning phase)
• Possible paradigm for other algorithms with predictions


