Scheduling with Speed
Predictions

Clifford Stein
Eric Balkanski, Tingting Ou and Hao-Ting Wei

Dept. of IEOR
Dept. of CS
Data Science Institute
Columbia University

Motivation for Model (no predictions yet)

* Scheduling with uncertainty is well studied

e Stochastic
* Robust

* Multistage
e etc.

* Most uncertainty deals with jobs
 What about machines?

* Application: group jobs in data center — before knowing where
they will be scheduled

* Application: pack items into boxes -- before knowing what
container/truck they will be placed in

Scheduling with machine uncertainty
[SZ18]

* Input:
* Upper bound M on the number of machines

* n jobs, with processing times p,
 Without knowing the number of machines, partition jobs into M bags
* Then learn the number of machines m

- Schedule the bags on the m machines to minimimze makespan (or

some other objective)

Scheduling with machine uncertainty
[SZ18]

 Evaluation
« Alg(m) - algorithm performance on m machines

« OPT(m) — Optimal algorithm that does not need to form bags in the first stage

« Want to minimize Max,, (Alg(m)/OPT(m))

* We called it the robust ratio, but we will be using robust to mean something

slightly different

* Need to form the bags so as to do well with all possible m

T (/)l>))l)l)\) M:B

Pahition |

%(JﬁJﬂO“ D\ M| AL | erméﬁb

\\ll \Qﬂk
, 203 13 |

331

Tdb s (H;%%ﬁ@ M= 2
?QﬁL)%)&ﬂ (

| 2 Fd l

\
Y\ 7\ 06
R

Scheduling with machine uncertainty
[SZ18]

» 5/3 approximation in general
» Better for special cases, unit jobs and infinitely divisible jobs

« Consider other objectives too

Generalization to speeds [EHMNSS21]

* Input
« m machines, with unknown speeds

* n jobs, with processing times p;
« Without knowing the speeds of machines, partition the jobs into m bags
* Then learn the machine speeds s;

« Schedule the bags on the m machines to minimimze makespan (or some

other objective)

Two level scheduling

Don’t know S;

Partition
stage

)

learn speed S;

)

Scheduling

stage

52

Results from Eberle et. al.

General speeds Speeds from {0,1}
Lower bound Upper bound Lower bound Upper bound

Discrete jobs p(m) 2-1 B -
(Rocks) (Theorem 2.1) (Theorem 3.3) [18] [18]
Equal-size jobs p(m) 1.8 3‘
(Bricks) (Theorem 2.1) (Theorem 4.3) ([18], Theorem 4.6)
Infinitesimal jobs p(m) < £ ~ 1.58 pon(m) < 12 ~ 1207
(Sand) (Theorems 2.1 and 2.3) ([18], Theorem 2.4)

Table 1: Summary of results on speed-robust scheduling.

Discrete jobs — 2 robust

* Don’t know speeds, but assume for now that). s; =). p;
e Put jobs in bags via LPT (Longest processing time)

o262 [N I I

Discrete jobs — 2 robust

* Don’t know speeds, but assume for now that). s; =). p;
* Put jobs in bags via LPT (Longest processing time)

Bag 1 | |
1 * Large (1 per bag) jobs are annoying
* b isthe size of the largest bag with at least 2 jobs

* lIgnoring Large jobs, smallest and largest bag are

Bag 2 “ within a factor of 2

Learn machine speeds

e Say machine speeds are 1,2,5

* Can think of machine of speed s as a machine of speed 1, but with capacity
S

* Will actually think of machines as having size 2s; and will pack bags on
machines using LPT

Everything fits

e Suppose the first k bags fit
e Suppose bag k+1 of size T does not fit

. T
* Let smallest bag be of sizew, w = >

* The (m-k) unpacked bags must have size at least

T
U>(m—-—-k—1Dw+T 2(m—k—1)(§)+T

* The k packed bags must have size
P = kT

Everything fits (cont)

* Since we inflated the machines by a factor of 2 and everything fits in
aggregate, we must have at least 2U + P free space.

* Plugging in
2U + P

>2((m—k—Dw+(3)+T)+KkT
>(m—k—1)T+ 2T + kT
>(m+ 1T

* So at least one machine can fit the bag of size T.

New Topic -- Algorithms with Predictions

* General idea of getting away from worst case analysis
* For an online algorithm, you have some predictions about the data

* If the predictions are accurate, you'd like to do as well as the offline
algorithm

* If the predictions are not accurate, you’'d like to do as well as the
online algorithm

* You don’t know if the predictions are accurate
* You need one algorithm for both cases

* You can also consider incorporating measures of the prediction
accuracy

(Aside) What do we want from Predictions

* Guiding principals
* Computable based on prior job traces
* Predictions should be reasonably sized
* Should be robust to error or inconsequential changes to the input

* Focus on quantity to predict
* Independent of learning algorithm used to construct the prediction
* Focus on the worst case with access to the prediction

Some Early Papers

e Caching [Lykouris and Vassilvitskii 2018]
e Ski Rental [Purohit et al 2018]

e Non-clairvoyant scheduling [Purohit et al 2018]

Algorithms with predictions are a hot area

* Workshop at STOC

 Previous talk in this workshop by Ben Moseley, just on

scheduling algorithms with predictions

* Webpage [Lindermayr, Megow]

Algorithms-with-predictions.github.io

Algorithms with Predictions PAPERLIST FURTHER MATERIAL ABOUT

Newest first ~ 117 papers
07 '09 10 17 18 19 20 21 22

Private i with Private Predicti Amin, Dick, Khodak, Vassilvitskii (arxw ‘22) differential privacy

Paging with Succinct Predictions Antoniadis, Boyar, Elid$, Favrholdt, Hoeksma, Larsen, Polak, Simon (ar v'zz} caching/paging m

Proportionally Fair Online Allocation of Public Goods with Predictions Banerjee, Gkatzelis, Hossain, Jin, Micha, Shah (arxiv ‘zz/‘ m

Canadian Traveller Problem with Predictions Bampls, Escoffier, Xefteris (‘arXiv'22) m

Learning-Augmented Algorithms for Online Linear and Semidefinite Programming Grigorescu, Lin, Silwal, Song, Zhou (arxiv'22) (GO problems m @

f ing with P

ki, Gkatzelis, Tan {arxiv '22‘) @ scheduling
Learning-Augmented Maximum Flow ~ Polak, Zub (‘arxiv'22)

Online Prediction in Sub-linear Space Peng, Zhang (aer '22')

Learning-Augmented Query Policies for Minimum Spanning Tree with Uncertainty Erlebach, Lima, Megow, Schloter (arxiv ‘22) ESA'22 N explorable uncertainty m

Online TSP with Predictions Hu, Wel, Li, Chung, Liao (‘arXiv 22) m

Learning-Augmented Binary Search Trees Lin, Luo, Woodruff f:arxiv '22)

data structure

Chasing Convex Bodies and Functions with Black-Box Advice Christianson, Handina, Wierman (‘arxiv 'zz:. COLT 22) convex body chasing m

Online Bipartite Matching with Advice: Tight Robustness-Consistency Tradeoffs for the Two-Stage Model Jin, Ma (‘ariv'22) m
Learning-Augmented Algorithms for Online TSP on the Line Gouleakis, Lakis, Shahkarami (aer '22} m

A Universal Error Measure for Input Predictions Applied to Online Graph Bernardini, Lindermayr, Marchetti-Spaccamela, Megow, Stougie,
Problems Sweering

Design with Predicti xutu (aniv22) (OB @m

Discrete-Convex-Analysis-Based Framework for Warm-Starting Algorithms with Predictions ~ Sakaue, Oki (‘arXiv'22) matroid intersection

A

g i PP tol i Online Algorithms ~ Anand, Ge, Kumar, Panigrahi

(xiv22) (R CID €D
Customizing ML Predictions For Online Algorithms Anand, Ge, Panigrahi (amv‘zz) ICML 20 @ m

. p o
Improved Price of Anarchy via Predictions Gkatzelis, Kollias, Sgouritsa, Tan (LarXiv'22)

badulinaith Snaad.Deadiati LanaliOu Stain oL P ____W______.__}

Online Algorithms with Multiple Predictions Anand, Ge, Kumar, Panigrahi (arxiv 2!

- o .
-\arXuv ZZJJ network design m rol

data structure

different

| privacy

prior/related work

matcl

linear quadratic control
load balancing
locality sensitive hashi
matroid intersection

Scheduling with speed predictions

* Input:
* n jobs with processing time p;
* m machines with unknown speed s; > 0

» A prediction of machine speeds 35; > 0

« Reminder:

* The processing time for job j on machine i is p;/s;

 Model

- Partition the jobs into m (possibly empty) bags only knowing speed predictions s;

» Learn the speeds 5; . Schedule bags on machines

» Objective function: Minimize the makespan

Evaluation of Algorithms

* For any speed realization S,
* ALGs is makespan of our algorithm

* OPTs is optimal makespan that knows S in advance (no bags)

* Define

_ ALGgs_3

= o Is the consistency (performance with good predictions)
S=S

°a

ALGg
OPTg

* B =maxg Is the robustness (performance with bad predictions)

Our results

Job sizes Speeds Lower bound Upper bound

General General | 14 (1 - a)/2a —~ O(1/m) (Theorem 3.2) | 2 + 2/« (Theorem 4.9)
Equal-size | General | 14 (1 - a)/2a —~ O(1/m) (Theorem 3.2) | 2 + 1/a (Theorem 5.1)

Infinitesimal | General | 14 (1 - a)?/4a — O(1/m) (Theorem 3.2) | 1 + 1/a (Theorem 5.5)
General {0.1} (4 —~ 2a)/3 (Theorem 5.13) 2 (Theorem 5.11)

Table 1: Robustness guarantees of deterministic (1 + «)-consistent algorithms, for any o € (0,1/2).

Consider prediction error

max{$;,s;)
: {f i) to be the maximum
min{S;,s;}

 We define the prediction error = max;em
ratio between the true speed and the predicted speed, or vice versa.
« We propose an algorithm that achieves the following result:
min{n? (1+a), (2 + 2/a)}-approximation
for any constants a € (0,1), where n > 1 is the prediction error.

* (1+a)-consistent , (2 + 2/a)-robust

Cannot trust the predictions blindly

« Consider 2m-1 equal size jobs
* P1=DP2=""=Pap-1 = 1.
« Given the prediction where s, =m,s;, = -+ =5_ = 1.

) Ifs;, =s, =-+=s5,, =1then
5171 the optimal makespan is 2 but

trust the prediction has
makespan at least m.

Trade-off between consistency and
robustness

Theorem: Any (1+a)-consistent algorithm has ~1/«a rate of increase of the

robustness.

E.g. If the required consistency is
(m+1)/m then it is feasible to create
two bags with total processing time
(m+1)/ 2.

o “‘

Makespan decreases
to (m+1)/2

Trade-off between consistency and
robustness

Theorem: Any (1+a)-consistent algorithm has ~1/a rate of increase of the

robustness.
« 2 consistent algorithm can be O(1)-robust

 Partition equally

» 2 consistent (makespan = 2, vs. 1)

« Can show is O(1) robust

« Want to be between follow predictions and partition equally

Preliminaries to Algorithm

* There is a PTAS [HS 88] for scheduling with speeds to minimize

makespan, so we will focus on the partitioning stage.
« Conceptually, we'd like to think about equal-sized jobs.

 Single large jobs get in the way of that thinking
* They can basically be handled by observing that both the algorithm

and OPT has to put them alone (similar to earlier proof)

Useful fact about robustness

* For any partition B = {B{, - By},
 let p(B) be the total processing time of a bag B € B.
* Let |B| be the number of jobs ina bag B € B

* Theorem : The robustness of partition B is at most max {f, 2}, where

maxgesp,p|z2P (B)
mingeg P(B)

)

is ratio the maximum total processing time of a bag containing at least two jobs to

the minimum total processing time of a bag.

Bound the robustness

> B <P(B)/P(Bu)

Algorithm: Iterative-Partial-Rebalancing
(IPR)

Partitioning Step:

1.
2.
3.

Trust the prediction S and partition all of jobs into m bags (*machines)

“Remove” singletons
While (5 = 4)

1. Add a bag with the minimum total processing time to the “machine” that contains the
largest non-singleton bag.

2. Rebalance this machine into 2 bags using LPT

Output the m bags

Algorithm: lterative-Partial-Rebalancing
(IPR)

) =) (TS (T

Bu(: |(:I(i

— |:|: |

@ @ @ e |

N) A

‘74- ‘xg’ ‘74- 3T TaT TR
(M) (M)

Figure 1: Illustration of one iteration of the IPR algorithm on an example with m = 3 bags
and machines and n = 5 jobs.

Analysis Sketch

* Lemma: During the algorithm, the processing time of the bag with
minimum total processing cannot decrease.

* Lemma: [does decrease, using features of LPT (Similar to analysis in
[EHMNSS21])

* So we gradually increase consistency and decrease robustness
 until...

* we show that if we require our partition to be (1 + «)-consistent then

the robustness is at most (2 + 2 / «).

Consider Prediction Error

max{ﬁi,si}

* Recall the prediction error n = max; ey,

min{s;s;}
« Theorem: the impact of error is at most n?.

* n%(1+a)-consistent , (2 + 2/a)-robust

Experimental Results

= = =
> o o

-

Approximation
N

=
@

0.0

B e
> o o

[

Approximation
N

-y
o

p;: Normal, s;: Normal
e

/
e

—e

—— |PR
« LPT
—+— 1-cons

4
|
’

——— - -

02 04 06 08 1.0
Oerr (NOrmalized as Oerr/ids)

p;: Uniform, s;: Normal

- .
® - > —e 7./‘/“ ° . . "
r"’—_--.— .___//

.-"._....

e -

-

. o

0.0 0.2 0.4 06 08 1.0
Oerr (NOrmalized as Oerr/ls)

Approximation

=
o

oL
NGB

=
(=)

=
=)

.
s

=

Approximation

=
(=)

0.0

p;j: Normal, s;: Uniform

—
» . > -
. g - - - . .
_
o

S e S _,,r"‘:——o—— . e
- —
T

—

e

0.2 04 06 08 1.0
Oerr (NOrmalized as Oer/Us)

p;: Uniform, s;: Uniform

0.0 0.2 0.4 0.6 0.8 1.0

Oerr (NOrmalized as Oerr/lds)

Conclusions

* Incorporate predictions into problem with machine uncertainty
e Other results for special cases

e Algorithm starts with predictions and moves to robustify (in
partitioning phase)

* Possible paradigm for other algorithms with predictions

