
Scheduling with Speed
Predictions

Clifford Stein
Eric Balkanski, Tingting Ou and Hao-Ting Wei

Dept. of IEOR
Dept. of CS

Data Science Institute
Columbia University

Motivation for Model (no predictions yet)
• Scheduling with uncertainty is well studied
• Stochastic
• Robust
• Multistage
• etc.

• Most uncertainty deals with jobs
• What about machines?
• Application: group jobs in data center – before knowing where

they will be scheduled
• Application: pack items into boxes -- before knowing what

container/truck they will be placed in

Scheduling with machine uncertainty
[SZ18]
• Input:

• Upper bound M on the number of machines

• n jobs, with processing times pj

• Without knowing the number of machines, partition jobs into M bags

• Then learn the number of machines m

• Schedule the bags on the m machines to minimimze makespan (or
some other objective)

Scheduling with machine uncertainty
[SZ18]
• Evaluation

• Alg(m) - algorithm performance on m machines

• OPT(m) – Optimal algorithm that does not need to form bags in the first stage

• Want to minimize Maxm (Alg(m)/OPT(m))

• We called it the robust ratio, but we will be using robust to mean something

slightly different

• Need to form the bags so as to do well with all possible m

Jobs (1) 1) 1) 1,1 , 1) M =3

Partitions

:I 1 I 3

Partition
" :

,
2

Jobs (1,1>3,3
,
4) 1=3

Partitions

ii. ¥÷F¥÷;→
Partitions

43 ?
'

a > H"is :*

Scheduling with machine uncertainty
[SZ18]

• 5/3 approximation in general

• Better for special cases, unit jobs and infinitely divisible jobs

• Consider other objectives too

Generalization to speeds [EHMNSS21]

• Input

• m machines, with unknown speeds

• n jobs, with processing times pj

• Without knowing the speeds of machines, partition the jobs into m bags

• Then learn the machine speeds si

• Schedule the bags on the m machines to minimimze makespan (or some

other objective)

Two level scheduling

Jobs
⋮ Scheduling

stage ⋮Partition
stage

learn speed 𝑆!

Don’t know 𝑆!

B!

B"

B#

B!

B$

B"

𝑆!

𝑆"

𝑆#

Results from Eberle et. al.

Discrete jobs – 2 robust

• Don’t know speeds, but assume for now that ∑𝑠* = ∑𝑝+
• Put jobs in bags via LPT (Longest processing time)

Bag 1

Bag 2

Bag 3

1

2

3 4

5 6

Discrete jobs – 2 robust

• Don’t know speeds, but assume for now that ∑𝑠* = ∑𝑝+
• Put jobs in bags via LPT (Longest processing time)

Bag 1

Bag 2

Bag 3

1

2

3 4

5 6

• Large (1 per bag) jobs are annoying
• b is the size of the largest bag with at least 2 jobs
• Ignoring Large jobs, smallest and largest bag are

within a factor of 2

Learn machine speeds

• Say machine speeds are 1,2,5
• Can think of machine of speed s as a machine of speed 1, but with capacity

s

• Will actually think of machines as having size 2si, and will pack bags on
machines using LPT

Everything fits

• Suppose the first k bags fit
• Suppose bag k+1 of size T does not fit

• Let smallest bag be of size w, 𝑤 ≥ ,
-

• The (m-k) unpacked bags must have size at least

𝑈 ≥ 𝑚 − 𝑘 − 1 𝑤 + 𝑇 ≥ 𝑚 − 𝑘 − 1
𝑇
2
+ 𝑇

• The k packed bags must have size
𝑃 ≥ 𝑘𝑇

Everything fits (cont)

• Since we inflated the machines by a factor of 2 and everything fits in
aggregate, we must have at least 2U + P free space.

• Plugging in
2𝑈 + 𝑃

≥ 2 (𝑚 − 𝑘 − 1 𝑤 + ,
-
+ 𝑇) + kT

≥ 𝑚 − 𝑘 − 1 𝑇 + 2𝑇 + 𝑘𝑇
≥ 𝑚 + 1 𝑇

• So at least one machine can fit the bag of size T.

New Topic -- Algorithms with Predictions

• General idea of getting away from worst case analysis
• For an online algorithm, you have some predictions about the data
• If the predictions are accurate, you’d like to do as well as the offline

algorithm
• If the predictions are not accurate, you’d like to do as well as the

online algorithm
• You don’t know if the predictions are accurate
• You need one algorithm for both cases
• You can also consider incorporating measures of the prediction

accuracy

(Aside) What do we want from Predictions

• Guiding principals
• Computable based on prior job traces
• Predictions should be reasonably sized
• Should be robust to error or inconsequential changes to the input

• Focus on quantity to predict
• Independent of learning algorithm used to construct the prediction
• Focus on the worst case with access to the prediction

Some Early Papers

• Caching [Lykouris and Vassilvitskii 2018]
• Ski Rental [Purohit et al 2018]
• Non-clairvoyant scheduling [Purohit et al 2018]

Algorithms with predictions are a hot area

• Workshop at STOC

• Previous talk in this workshop by Ben Moseley, just on

scheduling algorithms with predictions

• Webpage [Lindermayr, Megow]

Algorithms-with-predictions.github.io

Scheduling with speed predictions
• Input:

• n jobs with processing time 𝑝!
• m machines with unknown speed 𝑠" > 0

• A prediction of machine speeds 𝑠̂" > 0

• Reminder:
• The processing time for job 𝑗 on machine 𝑖 is ⁄𝑝! 𝑠"

• Model
• Partition the jobs into m (possibly empty) bags only knowing speed predictions 𝑠̂"
• Learn the speeds 𝑠̂" . Schedule bags on machines

• Objective function: Minimize the makespan

Evaluation of Algorithms

• For any speed realization S,
• 𝐴𝐿𝐺# is makespan of our algorithm

• 𝑂𝑃𝑇# is optimal makespan that knows S in advance (no bags)

• Define

• 𝛼 = $%&!"#!
'()!"#!

is the consistency (performance with good predictions)

• β = 𝑚𝑎𝑥#
$%&!
'()!

is the robustness (performance with bad predictions)

Our results

Consider prediction error

• We define the prediction error 𝜂 = 𝑚𝑎𝑥!∈[,]
./0{3̂$,3$}
.!6{3̂$,3$}

to be the maximum

ratio between the true speed and the predicted speed, or vice versa.

• We propose an algorithm that achieves the following result:

min{𝜂7 (1+𝛼), (2 + 2/𝛼)}-approximation

for any constants 𝛼 ∈ (0,1), where 𝜂 ≥ 1 is the prediction error.

• (1+𝛼)-consistent , (2 + 2/𝛼)-robust

Cannot trust the predictions blindly

• Consider 2m-1 equal size jobs
• 𝑝8 = 𝑝7 = ⋯ = 𝑝7,98 = 1.

• Given the prediction where 1𝑠. = 𝑚, 1𝑠- = ⋯ = 5𝑠/ = 1.

⋮

B!= m

B"=1

B#=1

B!𝑆!=1
If 𝑠8 = 𝑠7 = ⋯ = 𝑠, = 1 then
the optimal makespan is 2 but
trust the prediction has
makespan at least m.

Trade-off between consistency and
robustness
Theorem: Any (1+𝛼)-consistent algorithm has ~1/𝛼 rate of increase of the

robustness.

⋮

B#= (m+1)/2

B$ = 1

B!𝑆! = 1

E.g. If the required consistency is
(m+1)/m then it is feasible to create
two bags with total processing time
(m+1) / 2.

B%= (m+1)/2

Makespan decreases
to (m+1)/2

Trade-off between consistency and
robustness
Theorem: Any (1+𝛼)-consistent algorithm has ~1/𝛼 rate of increase of the

robustness.

• 2 consistent algorithm can be O(1)-robust

• Partition equally

• 2 consistent (makespan = 2, vs. 1)

• Can show is O(1) robust

• Want to be between follow predictions and partition equally

Preliminaries to Algorithm

• There is a PTAS [HS 88] for scheduling with speeds to minimize

makespan, so we will focus on the partitioning stage.

• Conceptually, we’d like to think about equal-sized jobs.

• Single large jobs get in the way of that thinking

• They can basically be handled by observing that both the algorithm

and OPT has to put them alone (similar to earlier proof)

Useful fact about robustness

• For any partition ℬ = 𝐵), ⋯𝐵* ,

• let p(B) be the total processing time of a bag 𝐵 ∈ ℬ.

• Let 𝐵 be the number of jobs in a bag 𝐵 ∈ ℬ

• Theorem : The robustness of partition ℬ is at most 𝑚𝑎𝑥 {𝛽, 2}, where

𝛽 =
𝑚𝑎𝑥+∈ℬ, + /0𝑃(𝐵)
𝑚𝑖𝑛+∈ℬ 𝑃(𝐵)

,

is ratio the maximum total processing time of a bag containing at least two jobs to
the minimum total processing time of a bag.

Bound the robustness

𝐵%

𝐵#

𝛽 ≤ 𝑃(𝐵;)/P(𝐵<)⋮

⋮

𝐵!

Algorithm: Iterative-Partial-Rebalancing
(IPR)
Partitioning Step:
1. Trust the prediction @𝑆 and partition all of jobs into m bags (~machines)
2. “Remove” singletons
3. While (𝛽 ≥ 4)

1. Add a bag with the minimum total processing time to the “machine” that contains the
largest non-singleton bag.

2. Rebalance this machine into 2 bags using LPT

4. Output the m bags

Algorithm: Iterative-Partial-Rebalancing
(IPR)

Analysis Sketch

• Lemma: During the algorithm, the processing time of the bag with
minimum total processing cannot decrease.

• Lemma: 𝛽 does decrease, using features of LPT (Similar to analysis in
[EHMNSS21])

• So we gradually increase consistency and decrease robustness
• until…

• we show that if we require our partition to be (1 + 𝛼)-consistent then

the robustness is at most (2 + 2 / 𝛼).

Consider Prediction Error

• Recall the prediction error 𝜂 = 𝑚𝑎𝑥*∈[/]
345{8̂!,8!}
3*;{8̂!,8!}

• Theorem: the impact of error is at most 𝜂-.

• 𝜂-(1+𝛼)-consistent , (2 + 2/𝛼)-robust

Experimental Results

Conclusions

• Incorporate predictions into problem with machine uncertainty
• Other results for special cases
• Algorithm starts with predictions and moves to robustify (in

partitioning phase)
• Possible paradigm for other algorithms with predictions

