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wait room
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long backlogs of appointments

Patients experience difficulties in accessing medical care.
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Figure: Merrit et al. (2015): Average appointment delay across 1399 med-
ical offices in 15 US metropolitan areas
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time scales

1 Indirect delay
Out-of-clinic wait
Virtual
Order of days, weeks
Negative health outcomes

2 Direct delay
On-site wait
Physical
Order of minutes, hours
Discomfort, frustration
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outpatient appointment scheduling problem

Outpatient Appointment Scheduling
optimize intra-day and/or inter-day operations

manage patient arrivals
across work-days inter-day scheduling
within a work-day intra-day scheduling

sources of uncertainty
1 no-shows
2 non-punctuality
3 emergency walk-ins
4 stochastic consultation times
5 stochastic demand for outpatient services
6 patient heterogeneity/preferences
7 seasonality

...

computationally complex combinatorial problem
curse of dimensionality (in dynamic settings)
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research question

Research Question

Dynamic inter-day and intra-day scheduling model

Mathematically and computationally tractable

Realistic enough to be useful for practice

Approach

Combine results from
Truong (2015) [Management Science]

Dynamic inter-day scheduling
Dimensionality reduction results
Analytical characterization
Computationally feasible exact solution

Zacharias and Yunes (2020) [Management Science]

Static intra-day scheduling
General stochastic service times, walk-ins, no-shows
Exact transient analysis, discrete convexity results
Computationally feasible exact solution
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Convex Functions on Continuous Spaces

x

λf (a) + (1− λ)f(b)

f (λa+ (1− λ)b)

a λa + (1 − λ)b b

f (a)

f (b)

f (x)

“A function f is convex if
the line segment connecting
any two points on the graph
of the function lies above
the graph.”

Convex Functions on Rn

When f is twice differentiable, then ∇2f (x) is positive definite.(
local

minimum

)
=

(
global

minimum

)
First order condition for local minimum: ∇f (x) = 0
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Convex Functions on Discrete Spaces
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Optimization on Zn is in general computationally expensive

It is crucial to identify structures that guarantee the success
of local search algorithms, so that(

local
optimum

)
=

(
global

optimum

)
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Convex Functions on Zn
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How do we define convexity in discrete spaces?

How do we define a local neighborhood?

Do we consider all possible combinations of unit directions?

Zacharias, Liu and Begen Dynamic Inter-day and Intra-day Scheduling miami 10/40



intro DP framework Truong (2015) Zacharias and Yunes (2020) joint inter-day & intra-day conclusion

Multimodularity and L\-convexity

L\-convexity

Introduced by Murota (1998)
Local optima also global

Multimodularity

Introduced by Hajek (1985)
Local optima also globallocal neighborhood

under

L\-convexity

 6=
local neighborhood

under
multimodularity
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Multimodularity and L\-convexity (cont’d)
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Roadmap

1 introduction X
2 DP framework

3 Truong (2015) inter-day scheduling

4 Zacharias and Yunes (2020) intra-day scheduling

5 joint inter-day & intra-day scheduling

6 conclusion
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state of the MDP

Xt =


xt1

xt2
...

xtτ
...

 =



slot 1 slot 2 ... slot n

day 1 x1
t1 x2

t1 ... xnt1

day 2 x1
t2 x2

t2 ... xnt2
...

...
...

. . .
...

day τ x1
tτ x2

tτ ... xntτ
...

...
...

. . .
...

 ∈ X

Xt = state of the MDP on day t (int. matrix)

xtτ = schedule in τ days from t (int. vector)

x itτ = # patients scheduled at slot i in τ days from t (int. scalar)

curse of dimensionality:

dimensionality reduction results
heuristics/approximations based on theory
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dynamic programming formulation

1 Observe current state (schedule) Xt → a matrix
2 Observe new demand dt
3 Make a scheduling decision Bt ∈ B(Xt , dt) → a matrix
4 Update the schedule Zt = Xt + Bt ∈ Z(Xt , dt) → a matrix
5 Tomorrow’s updated schedule is zt1 → a vector
6 Incur inter-day and intra-day costs
7 Update the state Xt+1 = ζ(Zt) and move to next period

Vt(Xt , dt) = min
Zt∈Z(Xt ,dt)

{inter(Zt) + intra( zt1 )

+ γE
dt+1

[Vt+1(ζ(Zt), dt+1)]}
where

inter(Zt) = ca|Zt | = linear indirect waiting cost for all patients

intra(zt1) = multimodular function
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Roadmap

1 introduction X
2 DP framework X
3 Truong (2015) inter-day scheduling

4 Zacharias and Yunes (2020) intra-day scheduling

5 joint inter-day & intra-day scheduling

6 conclusion
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Truong (2015): Optimal Advance Scheduling

Truong (2015): Optimal Advance Scheduling [Mgmt Science]:

dynamic inter-day scheduling with commitment

Dynamically assign appointment day (inter-day decision) but not
appointment time (intra-day decision).

State of the MDP is a vector that captures the total number of
patients scheduled for each day in the scheduling horizon.

xt = (xtτ )τ = state of the MDP on day t (vector)
xtτ = # patients scheduled in τ days from t (scalar)
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Truong (2015): Optimal Advance Scheduling

Truong (2015): Optimal Advance Scheduling [Mgmt Science]:
1 Observe current state (schedule) xt → a vector
2 Observe new demand dt
3 Make a booking decision bt ∈ B(xt , dt) → a vector
4 Update the schedule zt = xt + bt ∈ Z(xt , dt) → a vector
5 Tomorrow’s updated schedule has zt1 patients → a scalar
6 Incur inter-day and intra-day costs
7 Update the state xt+1 = η(zt) and move to next period

Ṽt(xt , dt) = min
zt∈Z(xt ,Dt)

{ ˜inter(zt) + ˜intra( zt1 )

+ βE
dt+1

[
Ṽt+1(η(zt), dt+1)

]
}

where

˜inter(zt) = ca|zt | = linear indirect waiting cost for all patients

˜intra(zt1) = convex function of one viariable
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Truong (2015): Optimal Advance Scheduling

Reduction of the problem to a single dimension due to
successive refinability property

Relax the constraint that prior commitments are binding

Solve the unconstrained problem

Well defined and easily computable solution

The solution is a refinement of the existing schedule

Any changes in the schedule can be made with new requests
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Zacharias and Yunes (2020)

Zacharias and Yunes (2020) Multimodularity in the Stochastic
Appointment Scheduling Problem with Discrete Arrival Epochs
[Management Science]

Static intra-day scheduling
General stochastic service times, walk-ins, no-shows
Exact transient analysis, discrete convexity results
Computationally feasible exact solution
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Supermodularity & Multimodularity

min
x∈Zn

+

f (x)
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Supermodularity & Directional Convexity

Definition: Supermodularity & Directional Convexity

(a) A function g : Zn
+ → R is supermodular if

g(x + ei + ej)− g(x + ei ) ≥ g(x + ej)− g(x) (1)

for all x ∈ Zn
+ and for all 1 ≤ i < j ≤ n .

(b) A function g : Zn
+ → R is directionally convex if inequality

(1) holds for all 1 ≤ i ≤ j ≤ n .

(directionally convex) = (supermodular) + (componentwise convex)

note: directional convexity alone does not guarantee optimality of
local optima, under any definition of locality in the literature.
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Multimodularity

Definition: Multimodularity

A function g : Zn
+ → R is multimodular if for all x ∈ Zn

+
(m1) g(x + e1 + en)− g(x + e1)≥ g(x + en)− g(x)
(m2)g(x + ei+1 + ej )− g(x + ei+1 + ej+1)≥ g(x + ei + ej )− g(x + ei + ej+1) ∀i 6= j
(m3) g(x + e1 + ej )− g(x + e1 + ej+1)≥ g(x + ej )− g(x + ej+1) ∀j
(m4) g(x + ei+1 + en)− g(x + ei+1)≥ g(x + ei + en)− g(x + en) ∀i

introduced by Hajek (1985) - optimal admission control to queues
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Local Neighborhood

Theorem (Murota 2004): local optima are global optima

For a multimodular function g : Zn → R we have

g(x) ≤ g(y) for all y ∈ Zn ⇐⇒ g(x) ≤ g(x± d) for all d ∈ D,

where D is the set of vectors of the form ei1 − ei2 + ... + (−1)k−1eik
for some increasing sequence of indices 1 ≤ i1 < i2 < ... < ik ≤ n.

2|D| = 2n+1 − 2
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Local Neighborhood in 3D

D =



(1, 0, 0),
(0, 1, 0),
(0, 0, 1),
(1, −1, 0),
(1, 0, −1),
(0, 1, −1),
(1, −1, 1)


neighbors of x

x± d, d ∈ D

size of neighborhood

14 = 2|D| = 24 − 2
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2

Multimodular local neighborhood in Z
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of unit deviations
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Queueing Model

Queueing System:
GIt/GI/1 in [0,T ]
Work conserving
FIFO

Time Scale:
time is measured in minutes
T = length of regular work-day (e.g., T = 480mins = 8hrs)
time is continuous, but
work-day is partitioned into n discrete slots of equal duration
d = T/n = slot duration (e.g., 30 mins, 10 mins, 5 mins, 1min)
larger n ⇒ more refined scheduling decisions
larger n ⇒ increased computational complexity
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Optimization Problem

Decision Variables:

x =


x1

x2

...

xn


# of patients assigned to slot 1
# of patients assigned to slot 2

...
# of patients assigned to slot n

Optimization Problem:
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Multimodular Function Minimization

Theorem

The objective function f : Zn
+ → R is multimodular.

min
x∈Zn

+

f (x)

let f : Zn
+ → R be a multimodular function(

local
min

)
=

(
global
min

)
(

size of local
neighborhood

)
∼ 2n+1

can we solve the problem in polynomial time?

Zacharias, Liu and Begen Dynamic Inter-day and Intra-day Scheduling miami 27/40



intro DP framework Truong (2015) Zacharias and Yunes (2020) joint inter-day & intra-day conclusion

Multimodular Function Minimization

Theorem: local search in polynomial time

Let f : Zn
+ → R be a multimodular function. Then the local

neighborhood search can be performed in polynomial time.
proof sketch:

1 f (x) multimodular

2 g(x) = f (Dx) is L\-convex, for some bidiagonal matrix D

3 min{f (x) : x ∈ Zn
+} ⇐⇒

min{g(x) : Dx ∈ Zn
+} ⇐⇒

min{g(x) : 0 ≤ x1 ≤ x2... ≤ xn, x ∈ Zn
+}

4 translate the problem to constrained submodular
set-function minimization

5 constraint set is a ring family
& identify its join-irreducible members

6 translate the problem to unconstrained submodular
set-function minimization

7 problem solved in polynomial time

Murota (2005)

NP-hard in general

Schrijver (2000)

O(n5γ + n6)
Orlin (2009)
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Roadmap

1 introduction X
2 DP framework X
3 Truong (2015) inter-day scheduling X
4 Zacharias and Yunes (2020) intra-day scheduling X
5 joint inter-day & intra-day scheduling

6 conclusion
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Connecting Truong (2015) & Zacharias and Yunes (2020)

Truong (2015):

The intra-day cost is a function of a scalar
(# of patients in the schedule)
Assumed to be general convex.

Zacharias and Yunes (2020):

The intra-day cost is a function of a vector
(a detailed schedule)
The # of patients in the schedule is the outcome of
unconstrained optimization
The unconstrained problem can be solved in polynomial time

Connecting link:

The intra-day cost is a function of a scalar
(# of patients in the schedule)
It is the outcome of constrained optimization.
Computable efficiently?
Convex?
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Unconstrained Intra-day Scheduling (UIS)

Consider the dynamic joint inter-day and intra-day problem
defined by V (Xt , dt)

Allow last-minute rearrangements of patients
within tomorrow’s schedule

Only the # of patients in an intra-day schedule
affects the intra-day cost function ¯intra

u(·)

Denote this relaxation of the problem as V u(Xt , dt)

¯intra
u( y ) = min

x∈Zn
+

f (x)

s.t.
n∑

i=1

xi = y
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Unconstrained Intra-day Scheduling (UIS)

• idle time • overtime • direct wait

f (x) = ci E[I (x)] +co E[O(x)] +cw E[W (x)]

¯intra
u
( y ) = min

x∈Zn
+

f (x)

s.t.
n∑

i=1

xi = y

Theorem

If f : Zn
+ → R is multimodular,

then ¯intra
u
(y) can be computed in

polynomial time for all y . Moreover,
¯intra

u
(·) is convex and V u(·, ·) is

computationally tractable.
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Sequentially Refinable Intra-day Scheduling (SRIS)

We say that the sequence of vectors {xsy , y = 1, 2, ...} is
sequentially refinable if

0 ≤ xs1 ≤ xs2 ≤ xs3.... and |xs(y)| = y for all y .

Any changes in the schedule, as the number of patients grows,
can be made with new requests.

Intra-day daily schedules are constructed to form a sequentially
refinable sequence by construction.

xy
∆
=


argmin{f (x) : x ∈ Zn

+} if y = y∗ = | argmin{f (x) : x ∈ Zn
+}|

argmin{f (x) : x ∈ Zn
+, |x| = y, x ≤ xy+1} for b = y∗ − 1, y∗ − 2, ..., 2, 1, 0

argmin{f (x) : x ∈ Zn
+, |x| = y, x ≥ xy−1} for y = y∗ + 1, y∗ + 2, ....

Only the # of patients in an intra-day schedule
affects the intra-day cost function intras(y)= f (xsy )

Denote this special case of the problem as V s(Xt , dt)
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Sequentially Refinable Intra-day Scheduling (SRIS)

xy
∆
=


argmin{f (x) : x ∈ Zn

+} if y = y∗ = | argmin{f (x) : x ∈ Zn
+}|

argmin{f (x) : x ∈ Zn
+, |x| = y, x ≤ xy+1} for b = y∗ − 1, y∗ − 2, ..., 2, 1, 0

argmin{f (x) : x ∈ Zn
+, |x| = y, x ≥ xy−1} for y = y∗ + 1, y∗ + 2, ....

intras(y)= f (xsy )
intrau(y)= min{f (x) : x ∈ Zn

+, |x| = y}

Theorem

If f : Zn
+ → R is multimodular, then

intras(y) can be computed in polyno-
mial time for all y . Moreover, intras(·)
is convex and V s(·, ·) is computationally
tractable.
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Sequentially Refinable Intra-day Scheduling (SRIS)

Theorem

V u(·, ·) ≤ V (·, ·) ≤ V s(·, ·)

UIS provides a lower bound through V u(·, ·)

UIS is infeasible for the original, but computationally tractable

SRIS provides an upper bound through V s(·, ·)

SRIS is feasible and thus a heuristic for the original
& computationally tractable

% optimality gap for SRIS is bounded from above by

V s
t (·, ·)− V u

t (·, ·)
V u
t (·, ·)

× 100%.
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computational experiments
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(b) ca = 3, λ varies

Figure: upper-bound on the % optimality gap of SRIS

input: d ∼ Poisson(λ), N = 8 hrs, k = 15 mins, p = 0.8, ci = 1, co = 1, cw = 0.1, R ∼ BetaBin(90, α, β) with

α & β such that m = 30 mins & σm−1 = 0.4, U = 0, γ = 0.975.
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computational experiments
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Figure: Difference between optimal controls for SRIS and UIS

input: d ∼ Poisson(λ), N = 8 hrs, k = 15 mins, p = 0.8, ci = 1, co = 1, cw = 0.1, R ∼ BetaBin(90, α, β) with

α & β such that m = 30 mins & σm−1 = 0.4, U = 0, γ = 0.975.
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computational experiments
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Figure: Optimal controls for SRIS

input: d ∼ Poisson(λ), N = 8 hrs, k = 15 mins, p = 0.8, ci = 1, co = 1, cw = 0.1, R ∼ BetaBin(90, α, β) with

α & β such that m = 30 mins & σm−1 = 0.4, U = 0, γ = 0.975.

Zacharias, Liu and Begen Dynamic Inter-day and Intra-day Scheduling miami 38/40



intro DP framework Truong (2015) Zacharias and Yunes (2020) joint inter-day & intra-day conclusion

conclusion

Dynamic inter-day and intra-day scheduling problem had been
a complex open problem, analytically and computationally in-
tractable.

We developed a dynamic programming framework

We proved novel theoretical results in discrete convex analysis

Theoretical lower and upper bounds

Computationally efficient heuristic solution with a theoretically
guaranteed optimality gap

Optimality gap numerically less than 1%
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thank you

thank you
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