Dynamic Inter-day and Intra-day Scheduling

Christos Zacharias

Miami Herbert Business School

University of Miami

czacharias@bus.miami.edu

Nan Liu

Carroll School of Management

Boston College

nan.liu@bc.edu

Mehmet A. Begen

Ivey Business School

Western University

mbegen@ivey.uwo.ca

Scheduling Seminar, Sep 14 2022

Zacharias, Liu and Begen

Dynamic Inter-day and Intra-day Scheduling

intro ●0000000000	DP framework	Truong (2015) 000	Zacharias and Yunes (2020)	joint inter-day & intra-day 0000000	conclusion 00
wait ro	om				

Zacharias, Liu and Begen

Dynamic Inter-day and Intra-day Scheduling

• Patients experience difficulties in accessing medical care.

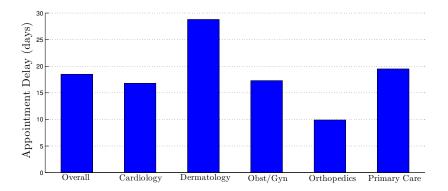


Figure: Merrit et al. (2015): Average appointment delay across 1399 medical offices in 15 US metropolitan areas

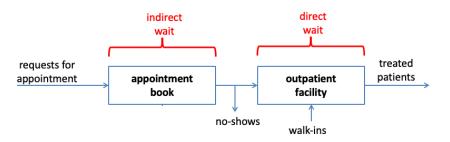
intro 0●00000000	DP framework	Truong (2015) 000	Zacharias and Yunes (2020)	joint inter-day & intra-day	conclusion 00
time so	cales				

1 Indirect delay

- Out-of-clinic wait
- Virtual
- Order of days, weeks
- Negative health outcomes

Oirect delay

- On-site wait
- Physical
- Order of minutes, hours
- Discomfort, frustration



intro DP framework Truong (2015) Zacharias and Yunes (2020) joint inter-day & intra-day conclusion conclusion ooooooooo oo ooo conclusion ooo oo outpatient appointment scheduling problem

• Outpatient Appointment Scheduling

optimize intra-day and/or inter-day operations

• manage patient arrivals

across work-days inter-day scheduling within a work-day intra-day scheduling

- sources of uncertainty
 - 🚺 no-shows
 - 2 non-punctuality
 - emergency walk-ins
 - stochastic consultation times
 - stochastic demand for outpatient services
 - patient heterogeneity/preferences
 - 🖉 seasonality

- computationally complex combinatorial problem
- curse of dimensionality (in dynamic settings)

intro ○○○●○○○○○○	DP framework	Truong (2015) 000	Zacharias and Yunes (2020)	joint inter-day & intra-day	conclusion
literatu	ire				

	intra-day scheduling	inter-day scheduling	joint intra/inter-day
<mark>static</mark> models	Zacharias and Yunes (2020) Wang et al. (2020) Kong et al. (2018) Qi (2017) Jiang et al. (2017) Zacharias and Pinedo (2017) Cayirli et al. (2012) Luo et al. (2012) Begen and Queyranne (2011) Robinson and Chen (2010) 	Liu (2016) Liu and Ziya (2014) Green and Savin (2008) 	Zacharias and Armony (2017) Luo et al. (2015)
dynamic models	Green et al. (2006) 	Truong (2015) Feldman et al. (2014) Truong and Shapiro (2013) Liu et al. (2010) Patrick et al. (2008) 	uncharted territory

intro ○○●○○○○○○	DP framework	Truong (2015) 000	Zacharias and Yunes (2020)	joint inter-day & intra-day 0000000	conclusion
literatu	ire				

	intra-day scheduling	inter-day scheduling	joint intra/inter-day
static models	Zacharias and Yunes (2020) Wang et al. (2020) Kong et al. (2018) Qi (2017) Jiang et al. (2017) Zacharias and Pinedo (2017) Cayirli et al. (2012) Luo et al. (2012) Begen and Queyranne (2011) Robinson and Chen (2010) 	Liu (2016) Liu and Ziya (2014) Green and Savin (2008) 	Zacharias and Armony (2017) Luo et al. (2015)
dynamic models	Green et al. (2006) 	Truong (2015) Feldman et al. (2014) Truong and Shapiro (2013) Liu et al. (2010) Patrick et al. (2008) 	uncharted territory

intro	DP framework	Truong (2015)	Zacharias and Yunes (2020)	joint inter-day & intra-day	conclusion
000000000000000000000000000000000000000					

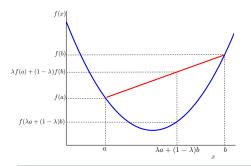
research question

Research Question

- Dynamic inter-day and intra-day scheduling model
- Mathematically and computationally tractable
- Realistic enough to be useful for practice

Approach

- Combine results from
 - Truong (2015) [Management Science]
 - Dynamic inter-day scheduling
 - Dimensionality reduction results
 - Analytical characterization
 - Computationally feasible exact solution
 - Zacharias and Yunes (2020) [Management Science]
 - Static intra-day scheduling
 - General stochastic service times, walk-ins, no-shows
 - Exact transient analysis, discrete convexity results
 - Computationally feasible exact solution



"A function *f* is convex if the line segment connecting any two points on the graph of the function lies above the graph."

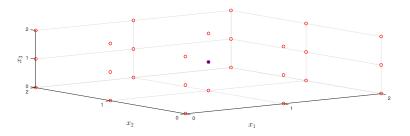
Convex Functions on \mathbb{R}^n

• When f is twice differentiable, then $\nabla^2 f(x)$ is positive definite.

•
$$\begin{pmatrix} local \\ minimum \end{pmatrix} = \begin{pmatrix} global \\ minimum \end{pmatrix}$$

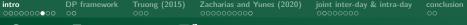
• First order condition for local minimum: $\nabla f(x) = 0$

Convex Functions on Discrete Spaces

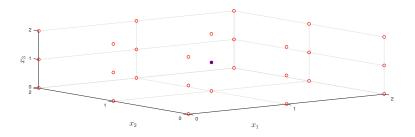


- Optimization on \mathbb{Z}^n is in general computationally expensive
- It is crucial to identify structures that guarantee the success of local search algorithms, so that

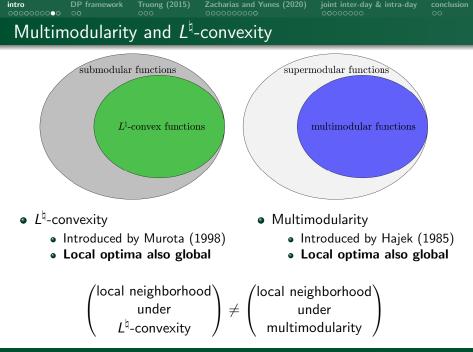
$$egin{pmatrix} \mathsf{local} \ \mathsf{optimum} \end{pmatrix} = egin{pmatrix} \mathsf{global} \ \mathsf{optimum} \end{pmatrix}$$



Convex Functions on \mathbb{Z}^n

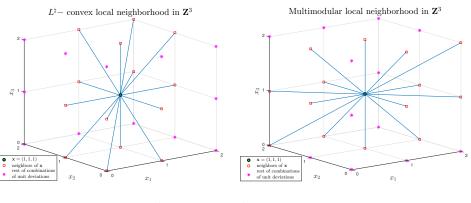


- How do we define convexity in discrete spaces?
- How do we define a local neighborhood?
- Do we consider all possible combinations of unit directions?



Zacharias, Liu and Begen

Dynamic Inter-day and Intra-day Scheduling



$$\begin{pmatrix} \text{size of local} \\ \text{neighborhood} \\ \text{in } \mathbb{Z}^n \end{pmatrix} = 2^{n+1} - 2$$

🖵 miami

intro 0000000000		Truong (2015) 000	Zacharias and Yunes (2020)	joint inter-day & intra-day 00000000	conclusion
Roadm	ар				

- $\bullet \quad \text{introduction } \checkmark$
- OP framework
- S Truong (2015) inter-day scheduling
- Zacharias and Yunes (2020) intra-day scheduling
- joint inter-day & intra-day scheduling
- onclusion

DP framework	Truong (2015)	Zacharias and Yunes (2020)	joint inter-day & intra-day	conclusion
0				

state of the MDP

$$\mathsf{X}_{t} = \begin{bmatrix} \mathsf{X}_{t1} \\ \mathsf{X}_{t2} \\ \vdots \\ \mathsf{X}_{t\tau} \\ \vdots \end{bmatrix} \stackrel{\mathsf{day 1}}{=} \begin{bmatrix} x_{t1}^{1} & x_{t1}^{2} & \dots & x_{t1}^{n} \\ \mathsf{day 2} \\ \vdots \\ \mathsf{x}_{t2}^{1} & \mathsf{x}_{t2}^{2} & \dots & \mathsf{x}_{t2}^{n} \\ \vdots \\ \vdots \\ \mathsf{x}_{t\tau}^{1} & \mathsf{x}_{t\tau}^{2} & \dots & \mathsf{x}_{t\tau}^{n} \\ \vdots \\ \mathsf{x}_{t\tau}^{1} & \mathsf{x}_{t\tau}^{2} & \dots & \mathsf{x}_{t\tau}^{n} \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \ddots \\ \vdots \\ \end{bmatrix} \in \mathcal{X}$$

- X_t = state of the MDP on day t (int. matrix)
- $x_{t\tau}$ = schedule in τ days from t (int. vector)
- $x_{t\tau}^i = \#$ patients scheduled at slot *i* in τ days from *t* (int. scalar)
- curse of dimensionality:
 - dimensionality reduction results
 - heuristics/approximations based on theory

intro DP framework Truong (2015) Zacharias and Yunes (2020) joint inter-day & intra-day

- $\textbf{0} \text{ Observe current state (schedule) } X_t \qquad \rightarrow \text{ a matrix}$
- Observe new demand d_t
- Make a scheduling decision $\mathsf{B}_t \in \mathcal{B}(X_t, d_t) \longrightarrow$ a matrix
- Update the schedule $Z_t = X_t + B_t \in \mathcal{Z}(X_t, d_t) \rightarrow a$ matrix
- **5** Tomorrow's updated schedule is $z_{t1} \rightarrow a$ vector
- Incur inter-day and intra-day costs
- Update the state $X_{t+1} = \zeta(Z_t)$ and move to next period

$$egin{aligned} V_t(\mathsf{X}_t, d_t) &= \min_{\mathsf{Z}_t \in \mathcal{Z}(\mathsf{X}_t, d_t)} ig\{ \mathtt{inter}(\mathsf{Z}_t) + \mathtt{intra}(\mathtt{Z}_{t1}) \ &+ \gamma \mathbb{E}_{d_{t+1}}\left[V_{t+1}(\zeta(\mathsf{Z}_t), d_{t+1})
ight] ig\} \end{aligned}$$

where

 $inter(Z_t) = c_a |Z_t| = linear indirect waiting cost for all patients$ $intra(z_{t1}) = multimodular function$

conclusion

intro 0 000 000000	DP framework ○●	Truong (2015) 000	Zacharias and Yunes (2020)	joint inter-day & intra-day 00000000	conclusion
Roadm	ар				

- $\bullet \quad \text{introduction } \checkmark$
- OP framework
- S Truong (2015) inter-day scheduling
- Zacharias and Yunes (2020) intra-day scheduling
- joint inter-day & intra-day scheduling
- onclusion

Truong (2015): Optimal Advance Scheduling [Mgmt Science]:

• dynamic inter-day scheduling with commitment

• Dynamically assign appointment day (inter-day decision) but not appointment time (intra-day decision).

- State of the MDP is a vector that captures the total number of patients scheduled for each day in the scheduling horizon.
 - $x_t = (x_{t\tau})_{ au}$ = state of the MDP on day t (vector)
 - $x_{t\tau} = \#$ patients scheduled in τ days from t (scalar)

intro DP framework Truong (2015) Zacharias and Yunes (2020) joint inter-day & intra-day conclusion

Truong (2015): Optimal Advance Scheduling [Mgmt Science]:

- $\textbf{0} \quad \text{Observe current state (schedule) } \mathsf{x}_t \qquad \rightarrow \mathsf{a} \text{ vector}$
- Observe new demand d_t
- $\textcircled{ 0 Update the schedule } \mathsf{z}_t = \mathsf{x}_t + \mathsf{b}_t \in \mathcal{Z}(\mathsf{x}_t, \mathit{d}_t) \quad \rightarrow \mathsf{a vector}$
- Tomorrow's updated schedule has z_{t1} patients \rightarrow a scalar
- Incur inter-day and intra-day costs
- Update the state $x_{t+1} = \eta(z_t)$ and move to next period

$$\begin{split} \tilde{V}_t(\mathsf{x}_t, d_t) &= \min_{\mathsf{z}_t \in \mathcal{Z}(\mathsf{x}_t, D_t)} \Big\{ \texttt{inter}(\mathsf{z}_t) + \texttt{intra}(\texttt{z}_{t1}) \\ &+ \beta \mathbb{E}_{d_{t+1}} \left[\tilde{V}_{t+1}(\eta(\mathsf{z}_t), d_{t+1}) \right] \Big\} \end{split}$$

where

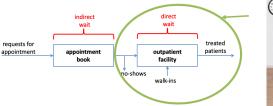
 $inter(z_t) = c_a |z_t| =$ linear indirect waiting cost for all patients $intra(z_{t1}) =$ convex function of one viariable

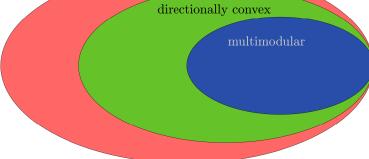
intro DP framework Truong (2015) Zacharias and Yunes (2020) joint inter-day & intra-day conclusion occorrection (2015): Optimal Advance Scheduling

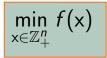
Reduction of the problem to a single dimension due to successive refinability property

- Relax the constraint that prior commitments are binding
- Solve the unconstrained problem
- Well defined and easily computable solution
- The solution is a refinement of the existing schedule
- Any changes in the schedule can be made with new requests

- Zacharias and Yunes (2020) Multimodularity in the Stochastic Appointment Scheduling Problem with Discrete Arrival Epochs [Management Science]
 - Static intra-day scheduling
 - General stochastic service times, walk-ins, no-shows
 - Exact transient analysis, discrete convexity results
 - Computationally feasible exact solution







Zacharias, Liu and Begen

Dynamic Inter-day and Intra-day Scheduling

DP framework Truong (2015) Zacharias and Yunes (2020) joint inter-day & intra-day conclusion Supermodularity & Directional Convexity Definition: Supermodularity & Directional Convexity A function $g: \mathbb{Z}^n_+ \to \mathbb{R}$ is supermodular if **a** $g(x+e_i+e_i) - g(x+e_i) \ge g(x+e_i) - g(x)$ (1)for all $x \in \mathbb{Z}^n_+$ and for all $1 \leq i < j \leq n$. **(a)** A function $g : \mathbb{Z}^n_+ \to \mathbb{R}$ is directionally convex if inequality (1) holds for all $1 \le i \le j \le n$.

(directionally convex) = (supermodular) + (componentwise convex)

note: directional convexity alone does not guarantee optimality of local optima, under any definition of locality in the literature.

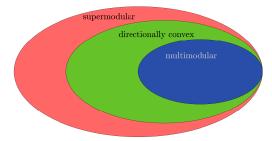
Zacharias, Liu and Begen

intro	DP framework	Truong (2015)	Zacharias and Yunes (2020)	joint inter-day & intra-day	conclusion
0 0 000000000000000000000000000000000		000	○○○●○○○○○○	0000000	00
Multin	nodularity	V			

Definition: Multimodularity

 $\begin{array}{l} \text{A function } g: \mathbb{Z}_{+}^{n} \to \mathbb{R} \text{ is multimodular if for all } x \in \mathbb{Z}_{+}^{n} \\ (\text{m1}) \quad g(x + e_{1} + e_{n}) - g(x + e_{1}) \geq \ g(x + e_{n}) - g(x) \\ (\text{m2})g(x + e_{i+1} + e_{j}) - g(x + e_{i+1} + e_{j+1}) \geq \ g(x + e_{i} + e_{j}) - g(x + e_{i} + e_{j+1}) \ \forall i \neq j \\ (\text{m3}) \quad g(x + e_{1} + e_{j}) - g(x + e_{1} + e_{j+1}) \geq \ g(x + e_{j}) - g(x + e_{i+1} + e_{j+1}) \ \forall j \\ (\text{m4}) \quad g(x + e_{i+1} + e_{n}) - g(x + e_{i+1}) \geq \ g(x + e_{i} + e_{n}) - g(x + e_{n}) \ \forall i \end{array}$

• introduced by Hajek (1985) - optimal admission control to queues



Local Neighborhood

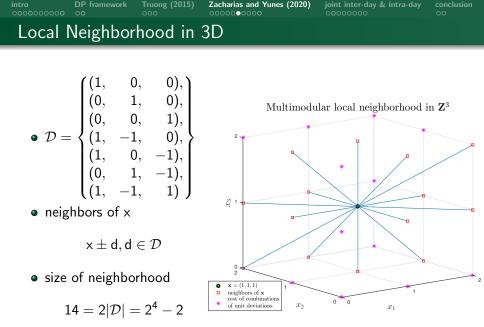
Theorem (Murota 2004): local optima are global optima

For a multimodular function $g:\mathbb{Z}^n \to \mathbb{R}$ we have

$$g(\mathsf{x}) \leq g(\mathsf{y})$$
 for all $\mathsf{y} \in \mathbb{Z}^n \iff g(\mathsf{x}) \leq g(\mathsf{x} \pm \mathsf{d})$ for all $\mathsf{d} \in \mathcal{D},$

where \mathcal{D} is the set of vectors of the form $\mathbf{e}_{i_1} - \mathbf{e}_{i_2} + \ldots + (-1)^{k-1} \mathbf{e}_{i_k}$ for some increasing sequence of indices $1 \leq i_1 < i_2 < \ldots < i_k \leq n$.

$$2|\mathcal{D}| = 2^{n+1} - 2$$



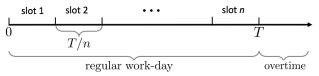
24/40

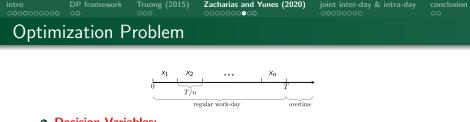
Queueing Model

- Queueing System:
 - $GI_t/GI/1$ in [0, T]
 - Work conserving
 - FIFO

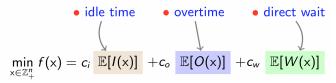
• Time Scale:

- time is measured in minutes
- T = length of regular work-day (e.g., T = 480 mins = 8 hrs)
- time is continuous, but
- work-day is partitioned into *n* discrete slots of equal duration
- d = T/n =slot duration (e.g., 30 mins, 10 mins, 5 mins, 1min)
- larger $n \Rightarrow$ more refined scheduling decisions
- larger $n \Rightarrow$ increased computational complexity





• Optimization Problem:



intro 0000000000	DP framework	Truong (2015) 000	Zacharias and Yunes (2020) ○○○○○○○●○	joint inter-day & intra-day 0000000	conclusion
Multim	nodular F	unction	Minimization		

Theorem

The objective function $f : \mathbb{Z}^n_+ \to \mathbb{R}$ is multimodular.

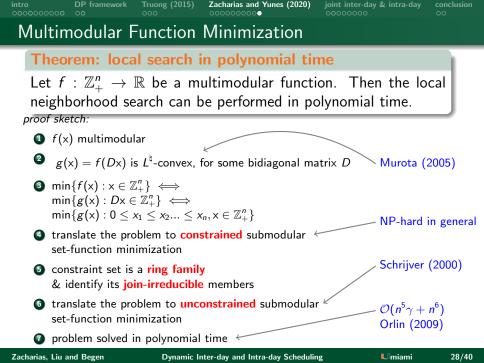
$$\min_{\mathsf{x}\in\mathbb{Z}_+^n}f(\mathsf{x})$$

• let $f:\mathbb{Z}^n_+ \to \mathbb{R}$ be a multimodular function

•
$$\binom{\text{local}}{\min} = \binom{\text{global}}{\min}$$

• $\binom{\text{size of local}}{\text{neighborhood}} \sim 2^{n+1}$

• can we solve the problem in polynomial time?



intro 0 0 000000000000000000000000000000000	DP framework	Truong (2015) 000	Zacharias and Yunes (2020)	joint inter-day & intra-day 00000000	conclusion 00
Roadm	ар				

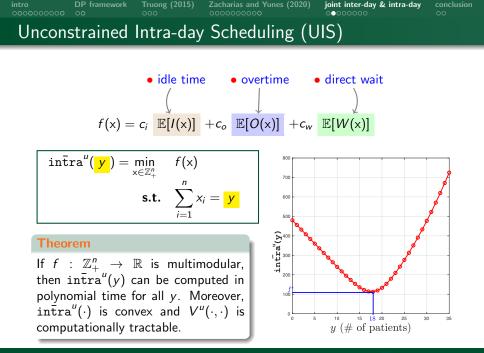
- $\bullet \quad \text{introduction } \checkmark$
- OP framework
- Iruong (2015) inter-day scheduling ✓
- Sacharias and Yunes (2020) intra-day scheduling
- joint inter-day & intra-day scheduling
- onclusion

- Truong (2015):
 - The intra-day cost is a function of a scalar (# of patients in the schedule)
 - Assumed to be general convex.
- Zacharias and Yunes (2020):
 - The intra-day cost is a function of a **vector** (a detailed schedule)
 - The # of patients in the schedule is the outcome of **unconstrained** optimization
 - The unconstrained problem can be solved in polynomial time
- Connecting link:
 - The intra-day cost is a function of a scalar
 - (# of patients in the schedule)
 - It is the outcome of **constrained** optimization.
 - Computable efficiently?
 - Convex?

- Consider the dynamic joint inter-day and intra-day problem defined by $V(X_t, d_t)$
- Allow last-minute rearrangements of patients within tomorrow's schedule
- Only the # of patients in an intra-day schedule affects the intra-day cost function intra^u(·)
- Denote this relaxation of the problem as $V^u(X_t, d_t)$

$$\begin{array}{l}
 \text{intra}^{u}(\mathbf{y}) = \min_{\mathbf{x} \in \mathbb{Z}_{+}^{n}} \quad f(\mathbf{x}) \\
 \text{s.t.} \quad \sum_{i=1}^{n} x_{i} = \mathbf{y}
\end{array}$$

$$\begin{array}{l}
 \text{idle time} \quad \text{overtime} \quad \text{direct wait} \\
 (\qquad \downarrow \qquad) \\
 f(\mathbf{x}) = c_{i} \quad \mathbb{E}[I(\mathbf{x})] \quad +c_{o} \quad \mathbb{E}[O(\mathbf{x})] \quad +c_{w} \quad \mathbb{E}[W(\mathbf{x})]
\end{array}$$



Zacharias, Liu and Begen

intro DP framework Truong (2015) Zacharias and Yunes (2020) joint inter-day & intra-day conclusion

- Sequentially Refinable Intra-day Scheduling (SRIS)
 - We say that the sequence of vectors {x_y^s, y = 1, 2, ...} is sequentially refinable if

 $0 \leq x_1^s \leq x_2^s \leq x_3^s$ and $|x^s(y)| = y$ for all y.

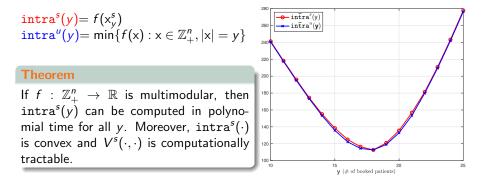
- Any changes in the schedule, as the number of patients grows, can be made with new requests.
- Intra-day daily schedules are constructed to form a sequentially refinable sequence by construction.

 $\begin{array}{l} \mathsf{x}_{y} \triangleq \begin{cases} \mathsf{argmin}\{f(\mathsf{x}): \mathsf{x} \in \mathbb{Z}_{+}^{n}\} & \text{if } y = y^{*} = |\operatorname{argmin}\{f(\mathsf{x}): \mathsf{x} \in \mathbb{Z}_{+}^{n}\}| \\ \mathsf{argmin}\{f(\mathsf{x}): \mathsf{x} \in \mathbb{Z}_{+}^{n}, |\mathsf{x}| = y, \mathsf{x} \leq \mathsf{x}_{y+1}\} & \text{for } b = y^{*} - 1, y^{*} - 2, ..., 2, 1, 0 \\ \mathsf{argmin}\{f(\mathsf{x}): \mathsf{x} \in \mathbb{Z}_{+}^{n}, |\mathsf{x}| = y, \mathsf{x} \geq \mathsf{x}_{y-1}\} & \text{for } y = y^{*} + 1, y^{*} + 2, \end{cases} \end{cases}$

- Only the # of patients in an intra-day schedule affects the intra-day cost function intra^s(y)= f(x^s_y)
- Denote this special case of the problem as $V^{s}(X_{t}, d_{t})$

$$\mathbf{x}_{y} \stackrel{\Delta}{=} \begin{cases} \operatorname{argmin} \{f(\mathbf{x}) : \mathbf{x} \in \mathbb{Z}_{+}^{n} \} \\ \operatorname{argmin} \{f(\mathbf{x}) : \mathbf{x} \in \mathbb{Z}_{+}^{n}, |\mathbf{x}| = y, \mathbf{x} \le \mathbf{x}_{y+1} \} \\ \operatorname{argmin} \{f(\mathbf{x}) : \mathbf{x} \in \mathbb{Z}_{+}^{n}, |\mathbf{x}| = y, \mathbf{x} \ge \mathbf{x}_{y-1} \} \end{cases}$$

$$\begin{split} & \text{f } y = y^* = |\operatorname{argmin} \{f(\mathbf{x}) : \mathbf{x} \in \mathbb{Z}_+^n\}| \\ & \text{for } b = y^* - 1, y^* - 2, \dots, 2, 1, 0 \\ & \text{for } y = y^* + 1, y^* + 2, \dots. \end{split}$$



intro DP framework Truong (2015) Zacharias and Yunes (2020) joint inter-day & intra-day conclusion

 $V^u(\cdot,\cdot) \leq V(\cdot,\cdot) \leq V^s(\cdot,\cdot)$

- UIS provides a lower bound through $V^u(\cdot, \cdot)$
- UIS is infeasible for the original, but computationally tractable
- SRIS provides an upper bound through $V^s(\cdot, \cdot)$
- SRIS is feasible and thus a heuristic for the original & computationally tractable
- $\bullet~\%$ optimality gap for SRIS is bounded from above by

$$\frac{V_t^s(\cdot,\cdot)-V_t^u(\cdot,\cdot)}{V_t^u(\cdot,\cdot)}\times 100\%.$$

intro 0 0 00000000	Truong (2015) 000	Zacharias and Yunes (2020)	joint inter-day & intra-day ○○○○●○○	conclusion

computational experiments

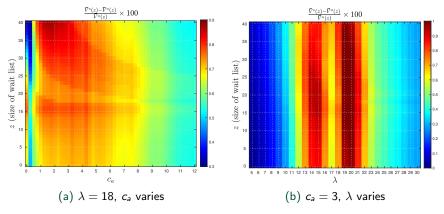


Figure: upper-bound on the % optimality gap of SRIS

input: $d \sim \text{Poisson}(\lambda)$, N = 8 hrs, k = 15 mins, p = 0.8, $c_i = 1$, $c_o = 1$, $c_w = 0.1$, $R \sim \text{BetaBin}(90, \alpha, \beta)$ with $\alpha \& \beta$ such that m = 30 mins $\& \sigma m^{-1} = 0.4$, U = 0, $\gamma = 0.975$.

Dynamic Inter-day and Intra-day Scheduling

intro 0 0 00000000	Truong (2015) 000	Zacharias and Yunes (2020)	joint inter-day & intra-day ○○○○○●○	conclusion

computational experiments

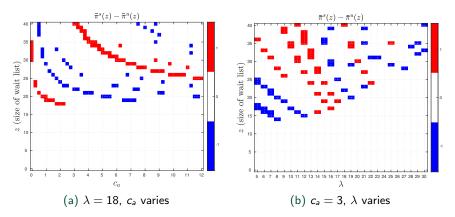


Figure: Difference between optimal controls for SRIS and UIS

input: $d \sim \text{Poisson}(\lambda)$, N = 8 hrs, k = 15 mins, p = 0.8, $c_i = 1$, $c_o = 1$, $c_w = 0.1$, $R \sim \text{BetaBin}(90, \alpha, \beta)$ with $\alpha \& \beta$ such that m = 30 mins $\& \sigma m^{-1} = 0.4$, U = 0, $\gamma = 0.975$.

Dynamic Inter-day and Intra-day Scheduling

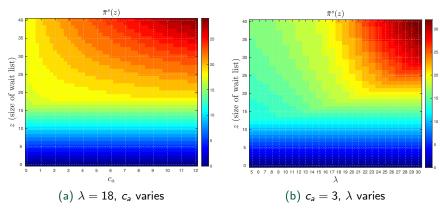


Figure: Optimal controls for SRIS

input: $d \sim \text{Poisson}(\lambda)$, N = 8 hrs, k = 15 mins, p = 0.8, $c_i = 1$, $c_o = 1$, $c_w = 0.1$, $R \sim \text{BetaBin}(90, \alpha, \beta)$ with $\alpha \& \beta$ such that m = 30 mins $\& \sigma m^{-1} = 0.4$, U = 0, $\gamma = 0.975$.

Zacharias, Liu and Begen

Dynamic Inter-day and Intra-day Scheduling

U miami

intro 0 0 000000000000000000000000000000000	DP framework	Truong (2015) 000	Zacharias and Yunes (2020)	joint inter-day & intra-day 0000000	conclusion ●○
conclus	sion				

- Dynamic inter-day and intra-day scheduling problem had been a complex open problem, analytically and computationally intractable.
- We developed a dynamic programming framework
- We proved novel theoretical results in discrete convex analysis
- Theoretical lower and upper bounds
- Computationally efficient heuristic solution with a theoretically guaranteed optimality gap
- \bullet Optimality gap numerically less than 1%

	DP framework	Truong (2015) 000	Zacharias and Yunes (2020)	joint inter-day & intra-day	conclusion ○●
thank	you				

• thank you