# Three models for scheduling under explorable uncertainty

Christoph Dürr Sorbonne Université, CNRS

schedulingseminar.com December 2021

## The standard model

Single machine, n jobs, each job j has processing time  $p_j$ , and priority weight  $w_j$ .

**Objective**: minimize  $\Sigma w_j C_j$ , where  $C_i$ =completion time of job j

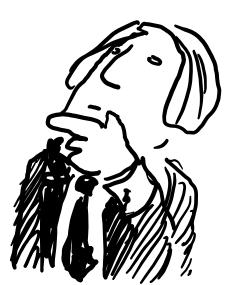
Optimum: schedule in order of decreasing Smith-ratio





 $\rightarrow P_2 \rightarrow$ 





Hmm, we don't have this information right now. Motivation: serving patients in an emergency departement

## Model 1

Levi, Magnanti, Shaposhnik, Scheduling with Testing, Management Science, 2019

Notations changed for the talk

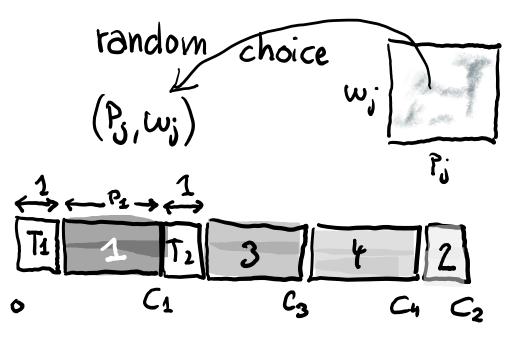
Single machine, n jobs, each job j has processing time pj, and priority weight wj.

 $(p_j, w_j)$  are randomly chosen from a joint distribution, identical for each j.

Initially only the distribution is known, not the actual job characteristics.

Algorithm can do a test for a specific job j, revealing  $p_j, w_j$ , it occupies 1 time unit on the schedule.

Objective: minimize  $\mathbf{E}[\Sigma w_j C_j]$ , where  $C_j$ =completion time of job j



Example: possible schedule on 4 jobs

- Test job 1
- Schedule right away because it has large Smith ratio
- Test job 2
- Decide not to schedule yet because it has small Smith ratio
- Execute jobs 3 and 4 untested
- Execute remaining job 2

Levi, Magnanti, Shaposhnik, Scheduling with Testing, Management Science, 2019

Notations changed for the talk

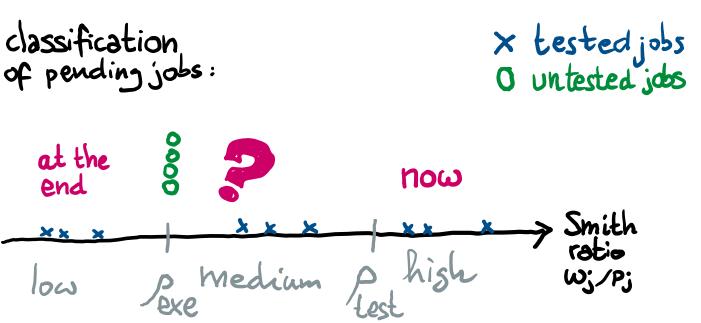
Single machine, n jobs, each job j has processing time pj, and priority weight wj.

 $(p_j, w_j)$  are randomly chosen from a joint distribution, identical for each j.

Initially only the distribution is known, not the actual job characteristics.

Algorithm can do a test for a specific job j, revealing  $p_j, w_j$ , it occupies 1 time unit on the schedule.

Objective: minimize  $\mathbf{E}[\Sigma w_j C_j]$ , where  $C_j$ =completion time of job j



• Expected Smith ratio

- $\rho_{exe} = \boldsymbol{E}\left[w_j\right]/\boldsymbol{E}\left[P_j\right]$
- Expected ratio of combined test + execution  $\rho_{test} = \mathbf{E}[w_j/(1+p_j)]$ .
- It is dominant to schedule high ratio jobs right away
- At any moment algorithm needs to decide whether
  - to test a job
  - to execute a job (with highest ratio, medium ratio)

Levi, Magnanti, Shaposhnik, Scheduling with Testing, Management Science, 2019

Notations changed for the talk

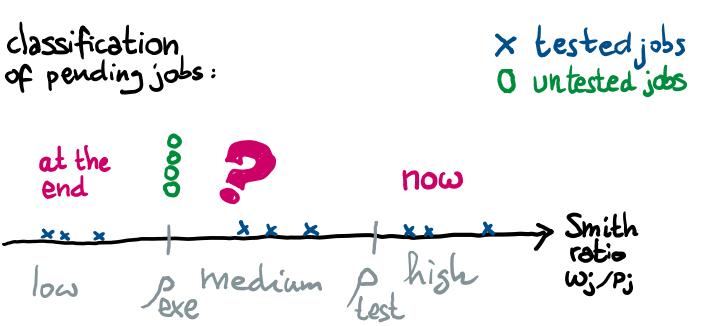
Single machine, n jobs, each job j has processing time pj, and priority weight wj.

 $(p_j, w_j)$  are randomly chosen from a joint distribution, identical for each j.

Initially only the distribution is known, not the actual job characteristics.

Algorithm can do a test for a specific job j, revealing  $p_j, w_j$ , it occupies 1 time unit on the schedule.

Objective: minimize  $\mathbb{E}[\Sigma w_j C_j]$ , where  $C_j$ =completion time of job j



- If  $\rho_{test} \leq \rho_{exe}$  it is optimal to schedule all jobs without testing
- If  $\rho_{test} > \rho_{exe}$ , then it is dominant to schedule in two phases
  - Execute all high ratio jobs
  - 1. Test some jobs (and execute right away if they have high ratio)
  - 2. Execute all pending jobs (in order of decreasing Smith ratio)
- Hence algorithm only needs to decide when to switch to phase 2
- Optimal decision can be computed by dynamic programming. States contain:
  - Number of untested jobs
  - Total weight of low ratio jobs
  - Total weight of medium ratio jobs
  - Total processing time of medium ratio jobs
  - Expected cost generated by testing a job
  - An FPTAS is obtained using standard rounding technique.

## Motivation for an adversarial model



## **Motivation**: send files, possibly compressing them first

## Model 2

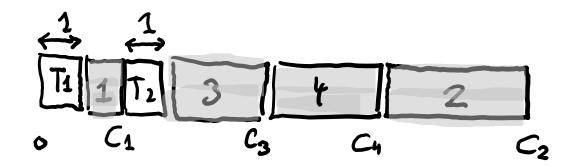
D, Erlebach, Megow, Meißner, An adversarial model for scheduling with testing, Algorithmica, 2020.

Single machine, n jobs.

Processing time of job  $j = u_j$  if untested and  $p_j$  if tested. Only  $u_j$  is known.

A test occupies 1 unit on the schedule and reveals  $p_j \in [0, u_j]$ .

Cost =  $\Sigma C_j$ , where  $C_j$ =completion time of job j



Example: possible schedule on 4 jobs

- Test job 1
- Schedule right away because it is short
- Test job 2
- Decide not to schedule yet because it is long
- Execute jobs 3 and 4 untested
- Execute remaining job 2

D, Erlebach, Megow, Meißner, An adversarial model for scheduling with testing, Algorithmica, 2020.

Single machine, n jobs.

Processing time of job j =  $u_j$  if untested and  $p_j$  if tested. Only  $u_j$  is known.

A test occupies 1 unit on the schedule and reveals  $p_j \in [0, u_j]$ .

Cost =  $\Sigma C_j$ , where  $C_j$ =completion time of job j Example with a single jobs

- Schedule it untested:
  objective = u<sub>1</sub>
- Test it, in the worst case it reveals  $p_1 = u_1$ . objective =  $1 + u_1$

#### **Performance measure**

We normalize by cost of optimal schedule

- Competitive ratio =  $\max \frac{ALG(I)}{OPT(I)}$ maximized over all instances  $I = (p_1, ..., p_n, u_1, ..., u_n)$ ALG = cost of algorithm OPT = cost of optimal schedule, i.e. test iff  $1 + p_j < u_j$
- Competitive ratio
  = price of hidden information





D, Erlebach, Megow, Meißner, An adversarial model for scheduling with testing, Algorithmica, 2020.

Single machine, n jobs.

Processing time of job  $j = u_j$  if untested and  $p_j$  if tested. Only  $u_j$  is known.

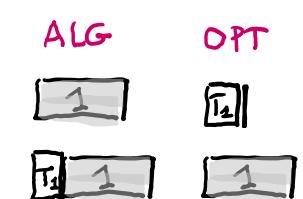
A test occupies 1 unit on the schedule and reveals  $p_j \in [0, u_j]$ .

Cost =  $\Sigma C_j$ , where  $C_j$ =completion time of job j

#### Warmup with a single job

- Schedule it untested: in the worst case  $p_j = 0$ competitive ratio =  $\frac{u_1}{1+p_j} = u_1$
- Test it, in the worst case  $p_1 = u_1$ . Competitive ratio =  $\frac{1+p_1}{u_1} = 1 + \frac{1}{u_1}$

Worst case instance gives competitive ratio  $\varphi=1.618$ 



D, Erlebach, Megow, Meißner, An adversarial model for scheduling with testing, Algorithmica, 2020.

Single machine, n jobs.

Processing time of job j =  $u_j$  if untested and  $p_j$  if tested. Only  $u_j$  is known.

A test occupies 1 unit on the schedule and reveals  $p_j \in [0, u_j]$ .

Cost =  $\Sigma C_j$ , where  $C_j$ =completion time of job j

| Competitive ratio                   | Lower bound | Upper bound         |
|-------------------------------------|-------------|---------------------|
| Deterministic ratio                 | 1.8546      | 2                   |
| Randomized ratio                    | 1.6257      | 1.7453 (asymptotic) |
| Uniform $u_j = p$                   | 1.8546      | 1.9338              |
| Uniform $u_j = p, p_j \in \{0, p\}$ | 1.8546      | 1.8668              |

D, Erlebach, Megow, Meißner, An adversarial model for scheduling with testing, Algorithmica, 2020.

Single machine, n jobs.

Processing time of job j =  $u_j$  if untested and  $p_j$  if tested. Only  $u_j$  is known.

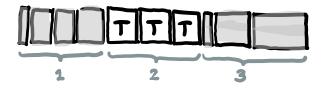
A test occupies 1 unit on the schedule and reveals  $p_j \in [0, u_j]$ .

Cost =  $\Sigma C_j$ , where  $C_j$ =completion time of job j

#### **Our results**

| Competitive ratio                   | Lower bound | Upper bound         |
|-------------------------------------|-------------|---------------------|
| Deterministic ratio                 | 1.8546      | 2                   |
| Randomized ratio                    | 1.6257      | 1.7453 (asymptotic) |
| Uniform $u_j = p$                   | 1.8546      | 1.9338              |
| Uniform $u_j = p, p_j \in \{0, p\}$ | 1.8546      | 1.8668              |

- 1. Execute untested all jobs j with  $u_j < 2$
- 2. Test all other jobs.
- 3. Execute all tested jobs (in optimal order)



D, Erlebach, Megow, Meißner, An adversarial model for scheduling with testing, Algorithmica, 2020.

Single machine, n jobs.

Processing time of job  $j = u_j$  if untested and  $p_j$  if tested. Only  $u_j$  is known.

A test occupies 1 unit on the schedule and reveals  $p_j \in [0, u_j]$ .

Cost =  $\Sigma C_j$ , where  $C_j$ =completion time of job j

Generalization for parallel identical machines Albers, Eckl, Scheduling with Testing on Multiple Identical Parallel Machines

#### **Our results**

| Competitive ratio                   | Lower bound | Upper bound         |
|-------------------------------------|-------------|---------------------|
| Deterministic ratio                 | 1.8546      | 2                   |
| Randomized ratio                    | 1.6257      | 1.7453 (asymptotic) |
| Uniform $u_j = p$                   | 1.8546      | 1.9338              |
| Uniform $u_j = p, p_j \in \{0, p\}$ | 1.8546      | 1.8668              |

Game played between adversary and algorithm. Uniform instance  $(u_j = p)$ Algorithm decides:

- 1. How many jobs to execute untested (adversary makes them short, i.e.,  $p_j = 0$ ).
- 2. Among the tested long jobs  $(p_j = p)$  how many will be executed right after their test

Adversary decides:

3. How many tested jobs are short

Second order analysis of minimizer/maximizer of the competitive ratio



Motivation: dry run jobs on far high-speed server to learn processing time

## Model 3

D, Dufossé, Nadal, Trystram, Vásquez. Scheduling with a processing time oracle, submitted, 2019

Single machine, n jobs, each job j has processing time p or p+x.

Initially only n, p, x are known, not the individual processing time.

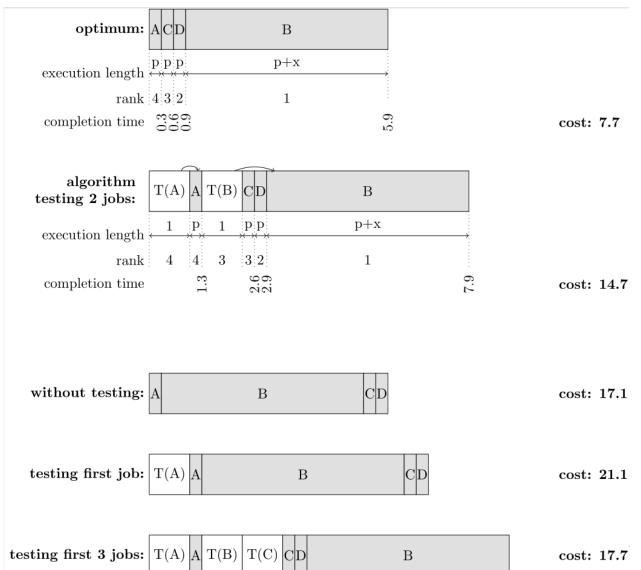
Algorithm can do a test for a specific job j, revealing if it is short or long, it occupies 1 time unit on the schedule.

Objective: minimize  $\Sigma C_j$ , where C<sub>i</sub>=completion time of job j

Goal: minimize competitive ratio CR:=cost of schedule produced by algorithm over cost of optimal schedule

#### Example

- 4 jobs A,B,C,D, only B is long (but algorithm does not know this initially)
- p=0.3, x=4.7



D, Dufossé, Nadal, Trystram, Vásquez. Scheduling with a processing time oracle, submitted, 2019

Single machine, n jobs, each job j has processing time p or p+x.

Initially only n, p, x are known, not the individual processing time.

Algorithm can do a test for a specific job j, revealing if it is short or long, it occupies 1 time unit on the schedule.

Objective: minimize  $\Sigma C_j$ , where C<sub>i</sub>=completion time of job j

Goal: minimize competitive ratio CR:=cost of schedule produced by algorithm over cost of optimal schedule

#### What we know

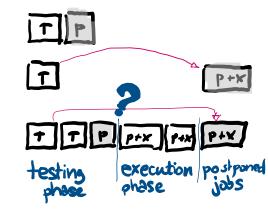
- It is dominant to execute tested short jobs immediately after their test.
- It is dominant to postpone the execution of tested long jobs towards the end.
- Algorithm only needs to decide for every job: test or execute untested

#### What we conjecture

 Two phases: optimal algorithm tests some jobs, then executes untested all remaining jobs

#### Warmup: non adaptive algorithm

- Algorithm decides before hand how many jobs to test
- Adversary (generating worst case instance) decides how many untested jobs are short and how many tested jobs are short
- Second order analysis -> optimal algorithm (assuming the conjecture)



D, Dufossé, Nadal, Trystram, Vásquez. Scheduling with a processing time oracle, submitted. 2019

Single machine, n jobs, each job j has processing time p or p+x.

Initially only n, p, x are known, not the individual processing time.

Algorithm can do a test for a specific job j, revealing if it is short or long, it occupies 1 time unit on the schedule.

Objective: minimize  $\Sigma C_i$ , where C<sub>i</sub>=completion time of job j

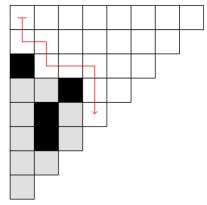
#### Goal: minimize competitive ratio CR:=cost of schedule produced by algorithm over cost of optimal schedule

#### Adaptive algorithm

- Assuming conjecture
- Algorithm=decide when to stop testing jobs
- Adversary=decide for each tested job, whether it is short or long

#### Algorithm-Adversary interaction modeled as a path

- Start in upper left cell
- Tested short job = one step down Tested long job = one step right
- To each cell along the path, we associate a stop ratio = competitive ratio obtained if algorithm stops here



- Algorithm will stop at cell with minimal stop ratio
- Suppose adversary know a strategy which forces ratio R\*
- Mark cells (black) which adversary should avoid to force ratio > R\*
- Marked cells form a combinatorial tableau, its boundary is the next • path the adversary tries
- Leads to an  $O(n^3)$  algorithm to compute optimal strategies for both algorithm and adversary 15

## **Research directions**

Allow machine learning based tests, which are prone to errors.

Implement in job scheduler of a cluster, and measure effect of job length predictions.

These model make sense only if tests are long compared to job processing times.

