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Train Scheduling: Two basic versions

❑ Operational (real-time): train rescheduling (dispatching)

❑ Tactical/Strategical: train timetabling

❑ Train scheduling: a job-shop scheduling problem

❑ Job-shop scheduling problem arising in other applications
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Network representation

❑ The tracks of the railway are segmented into elementary "blocks"

❑ Each block can accommodate at most one train at a time 

a
b

d

g
e

f

e
h

c



10

Modelling train movement

❑ A train runs through a sequence of blocks  (its route)

❑ 𝑡𝑞
𝑖 is the time train 𝑖 enters block 𝑞 (schedule variable)

❑ If 𝑡𝑢 is the time the train enters a block, and 𝑡𝑣 when it enters next one, then 

𝑡𝑣 − 𝑡𝑢 ≥ 𝑙𝑢𝑣, 

where 𝑙𝑢𝑣 is the minimum running for the train through the block  
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The route graph

❑ The train movement represented by route graph 

❑ Nodes correspond to (the event) entering a block section. 

❑ Edges represent time precedence constraints  𝑡𝑔
𝑖 − 𝑡𝑑

𝑖 ≥ 𝑙𝑑𝑔
𝑖
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A route graph in Oslo S
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The time origin

❑ We add a node 𝑜 representing the start 𝑡𝑜 of the planning horizon

h

a b d g h

𝑡𝑎
𝑖 𝑡𝑏

𝑖 𝑡𝑑
𝑖 𝑡𝑔

𝑖
𝑡ℎ
𝑖
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𝑡𝑜

❑ Event 𝑑 starting not before time Δ: 𝑡𝑑 − 𝑡𝑜 ≥ 30

30

10

-10

❑ Event 𝑎 starting at time Δ: 𝑡𝑎 − 𝑡𝑜 = 10 → ቊ
𝑡𝑎 − 𝑡𝑜 ≥ 10
𝑡𝑜 − 𝑡𝑎 ≥ −10

Timetable 
constraints/edges
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(potential) Conflicts
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c              h

❑ Trains compete for the same blocks  

❑ Either train i enters block g before j enters d: 𝑡𝑑
𝑗
− 𝑡𝑔

𝑖 ≥ 0

❑ Or train j enters block c before i enters d: 𝑡𝑑
𝑖 − 𝑡𝑐

𝑗
≥ 0

𝑡𝑑
𝑗
− 𝑡𝑔

𝑖 ≥ 0ሧ𝑡𝑑
𝑖 − 𝑡𝑐

𝑗
≥ 0

i

j

Disjunctive constraint
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Disjunctive arc
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Disjunctive constraint

a b d g h
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h f d c a

j

o

𝑡𝑑
𝑗
− 𝑡𝑔

𝑖 ≥ 0ሧ𝑡𝑑
𝑖 − 𝑡𝑐

𝑗
≥ 0

Disjunctive arc = pair of directed edges

𝑡𝑜
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"Solving" Conflicts

a
b
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c              h
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a b d g h

i

h f d c a

j

❑ Solving a conflict means deciding which  term  in 𝑡𝑑
𝑗
− 𝑡𝑔

𝑖 ≥ 0 𝐎𝐑 𝑡𝑑
𝑖 − 𝑡𝑐

𝑗
≥ 0 to satisfy

train 𝑖 goes first

𝑡𝑑
𝑗
− 𝑡𝑔

𝑖 ≥ 0
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Train scheduling problem

❑ Network N, set trains 𝐼 (with current position) and a wanted timetable 𝑇. 

❑ 𝑇𝑠
𝑖 is the arrival time of train 𝑖 at station 𝑠. 

WANT

❑ Find a schedule 𝑡∗ satisfying all fixed and disjunctive precedence constraints.

❑ Minimize 𝑓 𝑡∗ (deviation from 𝑇)

PS. Fixed route case. 
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On the objective function 𝒇(𝒕)

}

❑ Typically computed in special events, i.e. the arrival time at some stations 𝑉∗ ⊂ 𝑉

❑ 𝑓 𝑡 = σ𝑢∈𝑉∗ 𝑓𝑢 𝑡𝑢 is often separable 

❑ Typically 𝑓𝑢 𝑡𝑢 is non-decreasing.

0 3min0
𝑇𝑢
1 𝑇𝑢

2 𝑇𝑢
3

𝑓𝑢

𝑡𝑢

𝑓𝑢

𝑡𝑢
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Disjunctive formulation

❑ 𝑉 set of events  (𝑣 ∈ 𝑉 is a certain train entering a certain block or the origin), 

𝐸 set of precedence constraints, 𝐷 set of disjunctive precedence constraints 

min 𝑓(𝑡)

𝑡𝑣 − 𝑡𝑢 ≥ 𝑙𝑢𝑣 𝑢, 𝑣 ∈ 𝐸

𝑡𝑤 − 𝑡𝑣 ≥ 0 OR 𝑡𝑢−𝑡𝑧 ≥ 0 𝑣,𝑤 , 𝑧, 𝑢 ∈ 𝐷

𝑡 ∈ 𝑅𝑉

}

❑ Train scheduling is a job-shop scheduling problem with blocking and no-wait 

constraints, Mascis & Pacciarelli (2002)   



20

Disjunctive graph

20

l q u v n

i

p w z

j

o s r g h m

k

min 𝑓(𝑡)

𝑡𝑣 − 𝑡𝑢 ≥ 𝑙𝑢𝑣 𝑢, 𝑣 ∈ 𝐸

𝑡𝑤 − 𝑡𝑣 ≥ 0 OR 𝑡𝑢−𝑡𝑧 ≥ 0 𝑣, 𝑤 , 𝑧, 𝑢 ∈ 𝐷

𝑡 ∈ 𝑅𝑉

❑ 𝑉 nodes (events), 𝐸 directed edges, 𝐷 disjunctive arcs (pairs of "conflict" edges 𝐸𝐷)

❑ Each conflict edge corrsponds to a specific term in a specific disjunction

𝐺 = (𝑉, 𝐸 ∪ 𝐸𝐷)
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Solving the disjunctive problem

21

l q u v n

i

p w z

j

h ms r g
k

min𝑓(𝑡)

𝑡𝑣 − 𝑡𝑢 ≥ 𝑙𝑢𝑣 𝑢, 𝑣 ∈ 𝐸

𝑡𝑤 − 𝑡𝑣 ≥ 0 OR 𝑡𝑢−𝑡𝑧 ≥ 0 𝑣,𝑤 , 𝑧, 𝑢 ∈ 𝐷

𝑡 ∈ 𝑅𝑉

❑ For each disjunction, we must decide which term is satisfied by the solution 𝑡

❑ Equivalent to picking exactly one (conflict) edge for each disjunctive arc

❑ The set of conflict edges "picked" up is called (complete) selection. 

𝐺 = (𝑉, 𝐸 ∪ 𝐸𝐷)
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Big-M formulation

❑ Two binary (selection) variables 𝑦𝑣𝑤, 𝑦𝑧𝑢 for each disjunction 𝑣,𝑤 , 𝑧, 𝑢 ∈ 𝐷

❑ And the "big-M trick"!

min 𝑓(𝑡)

𝑡𝑣 − 𝑡𝑢 ≥ 𝑙𝑢𝑣 𝑢, 𝑣 ∈ 𝐸

𝑡𝑤 − 𝑡𝑣 ≥ 0 OR 𝑡𝑢−𝑡𝑧 ≥ 0 𝑣,𝑤 , 𝑧, 𝑢 ∈ 𝐷

𝑡 ∈ 𝑅𝑉 , y ∈ 0,1 2𝐷

}

𝑦𝑣𝑤 + 𝑦𝑧𝑢 = 1
𝑡𝑤 − 𝑡𝑣 ≥ −𝑀(1 − 𝑦𝑣𝑤)
𝑡𝑢 − 𝑡𝑧 ≥ −𝑀(1 − 𝑦𝑧𝑢)
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Big-M formulation

}

min 𝑓(𝑡)

𝑡𝑣 − 𝑡𝑢 ≥ 𝑙𝑢𝑣 𝑢, 𝑣 ∈ 𝐸

𝑣, 𝑤 , 𝑧, 𝑢 ∈ 𝐷

𝑡 ∈ 𝑅𝑉 , y ∈ 0,1 2𝐷

𝑡𝑤 − 𝑡𝑣 ≥ −𝑀(1 − 𝑦𝑣𝑤)
𝑡𝑢 − 𝑡𝑧 ≥ −𝑀(1 − 𝑦𝑧𝑢)
𝑦𝑣𝑤 + 𝑦𝑧𝑢 = 1Selection constraints

Fixed precedence

Disjunctive constraints

❑ Big-M formulations most used in the literature on train dispatching

❑An alternative: time-indexed formulations (often used in train timetabling)

Def. Feasible selections: 𝑌 = 𝑦 ∈ 0,1 2𝐷: 𝑦𝑣𝑤 + 𝑦𝑧𝑢 = 1, 𝑣, 𝑤 , 𝑧, 𝑢 ∈ 𝐷

ቑ
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Big-M formulation

}

min 𝑓(𝑡)

𝑡𝑣 − 𝑡𝑢 ≥ 𝑙𝑢𝑣 𝑢, 𝑣 ∈ 𝐸

𝑣, 𝑤 , 𝑧, 𝑢 ∈ 𝐷

𝑡 ∈ 𝑅𝑉 , 𝑦 ∈ 𝑌

𝑡𝑤 − 𝑡𝑣 ≥ −𝑀(1 − 𝑦𝑣𝑤)
𝑡𝑢 − 𝑡𝑧 ≥ −𝑀(1 − 𝑦𝑧𝑢)

Fixed precedence

Disjunctive constraints

❑ Dual of a min-cost flow problem when 𝑓(𝑡) is linear.

For a given selection:  ത𝑦 ∈ 𝑌 let 𝑆 ത𝑦 be the set of selected terms. The problem becomes: 

min {𝑓(𝑡): 𝑡𝑣 − 𝑡𝑢 ≥ 𝑙𝑢𝑣 , 𝑢𝑣 ∈ 𝐸 ∪ 𝑆 ത𝑦 , 𝑡 ∈ 𝑅𝑉} Sched(ത𝑦)



Benders’ decomposition(s)
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Conflict edges
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❑ Each conflict edge 𝑒 ∈ 𝐸𝐷 is associated with a selection variable 𝑦𝑒

❑ 𝑦 ∈ 𝑌 is the incidence vector of a set  𝑆 𝑦 ⊆ 𝐸𝐷 of (conflict) edges

min𝑓(𝑡)

𝑡𝑣 − 𝑡𝑢 ≥ 𝑙𝑢𝑣 𝑢, 𝑣 ∈ 𝐸

𝑣,𝑤 , 𝑧, 𝑢 ∈ 𝐷

𝑡 ∈ 𝑅𝑉 , 𝑦 ∈ 𝑌

𝑡𝑤 − 𝑡𝑣 ≥ −𝑀(1 − 𝑦𝑣𝑤)
𝑡𝑢 − 𝑡𝑧 ≥ −𝑀(1 − 𝑦𝑧𝑢)

l q u v n
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p w z

j

o s r g h m

k

𝒚𝒛𝒖𝒚𝒗𝒘

𝒚𝒓𝒍𝒚𝒒𝒔

𝒚𝒘𝒓

𝒚𝒏𝒉 𝒚𝒎𝒗

𝒚𝒈𝒑

𝐺 = (𝑉, 𝐸 ∪ 𝐸𝐷)



What to do with routing?

❑ Add the alternative routing edges 𝐸𝑅 and binary (routing) variables 𝑦𝑒 , 𝑒 ∈ 𝐸𝑅

27

a b d g h

i

𝒚𝒂𝒎

𝒚𝒎𝒏

𝒚𝒏𝒈

𝒚𝒂𝒃 𝒚𝒃𝒏 𝒚𝒅𝒈

j

h f d c a

o
𝒚𝒄𝒅

𝒚𝒈𝒅

m n

❑ Extend the set 𝑌:  new variables, multicommodity flow and coupling costraints. 
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Disjunctive graph and scheduling 

❑ For ത𝑦 ∈ 𝑌 the disjunctive graph becomes a standard graph 𝐺 ത𝑦 = (𝑉, 𝐸 ∪ 𝑆 ത𝑦 )

l q u v n
i

p w z
j

o s r g h m
k

❑How does 𝐺 ത𝑦 relate to the associated 

scheduling problem Sched(ത𝑦)? 

ഥ𝒚𝒛𝒖=1

ഥ𝒚𝒓𝒍=1

ഥ𝒚𝒘𝒓 =1

ഥ𝒚𝒎𝒗= 1

min𝑓(𝑡)

𝑡𝑣 − 𝑡𝑢 ≥ 𝑙𝑢𝑣 , 𝑢𝑣 ∈ 𝐸 ∪ 𝑆 ത𝑦

𝑡 ∈ 𝑅𝑉

Sched(ത𝑦)
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Feasibility

Th. 1. For ത𝑦 ∈ 𝑌, Sched(ത𝑦) has a solution, if and only if 𝐺 ത𝑦 does not contain a 

directed cycle 𝐶 of positive length 𝑙(𝐶). 

l q u v n

i

w z
j

o s r g h m
k

ഥ𝒚𝒗𝒘=1

ഥ𝒚𝒓𝒍=1

ഥ𝒚𝒘𝒓 =1

𝐶 = {(𝑙𝑞), (𝑞𝑢), (𝑢𝑣), (𝑣𝑤), (𝑤𝑟), (𝑟𝑙)}

𝑙 𝐶 = 10 + 20 + 15 + 5 + 3 + 3 > 0
ഥ𝒚𝒎𝒗= 1

10 20 15

5

3

3



Example of infeasible solution

15 min
f

c              d

𝒅𝒊 𝒇𝒊
i

𝒅𝒋 𝒄𝒋

j

o

Current time is 09:00
Train i leaves the station at 9:10 (exactly)
Train j can leave the station at any time from now

Suppose 𝑗 wins the conflict on 𝑑

10

-10

0

0

0

15

15

𝑗 wins → pick edge 𝑐𝑗 , 𝑑𝑖

Cycle  𝐶 = 𝑐𝑗𝑑𝑖 , 𝑑𝑖 𝑜, 𝑜𝑑𝑗 , 𝑑𝑗𝑐𝑗 , length 5 > 0

𝐶

i

j
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Feasible solutions

Th. 2. ҧ𝑡𝑢
∗ = length of longest path from 𝑜 to 𝑢 ∈ 𝑉 in 𝐺 ത𝑦 is feasible for Sched(ത𝑦)

l q u v n 
i

w z
j

o s r g h m 
k

ഥ𝒚𝒛𝒖 =1

𝐺 ത𝑦 = (𝑉, 𝐸 ∪ 𝑆 ത𝑦 )

𝑙𝑢𝑣

❑ ത𝑦 ∈ 𝑌, 𝐺 ത𝑦 no positive directed cycles.  

ഥ𝒚𝒎𝒗= 1ഥ𝒚𝒓𝒍=1

ഥ𝒚𝒘𝒓=1

min𝑓(𝑡)

𝑡𝑣 − 𝑡𝑢 ≥ 𝑙𝑢𝑣 , 𝑢𝑣 ∈ 𝐸 ∪ 𝑆 ത𝑦

𝑡 ∈ 𝑅𝑉

Sched(ത𝑦)
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Optimal solutions

Th. 3. If 𝑓(𝑡) is non-decreasing then ҧ𝑡∗ is an optimal solution for Sched(ത𝑦)

❑ ത𝑦 ∈ 𝑌, 𝐺 ത𝑦 no positive dicycles. For 𝑢 ∈ 𝑉, ҧ𝑡𝑢
∗ = length of longest 𝑜𝑢-path in 𝐺 ത𝑦

l q u v n 

w z

o s r g h m 

𝑡𝑙
∗

Def. 𝐻∗ ത𝑦 longest path tree in 𝐺 ത𝑦 then let 𝑐(𝐻∗) = 𝑓 ҧ𝑡∗ be the cost of 𝐻∗

min𝑓(𝑡)

𝑡𝑣 − 𝑡𝑢 ≥ 𝑙𝑢𝑣 , 𝑢𝑣 ∈ 𝐸 ∪ 𝑆 ത𝑦

𝑡 ∈ 𝑅𝑉

Sched(ത𝑦)



33

Scheduling problem for regular 𝒇(𝒕)

Find ത𝑦 ∈ 𝑌, such that 𝐺 ത𝑦 has no positive directed cycles and the cost 𝑐(𝐻∗) of a longest  
path tree 𝐻∗ in 𝐺 ത𝑦 is minimized.

33

l q u v n 

i

w z
j

o s r g h m 
k

𝑙𝑢𝑣

𝐺 ത𝑦
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The Path&Cycle formulation

❑ This led to a new (Path&Cycle, 2019) formulation without annoying big-M constraints (but 

potentially many constraints)

❑ Based on disjunctive graph 𝐺 = 𝑉, 𝐸 ∪ 𝐸𝐷 (𝐺 = 𝑉, 𝐸 ∪ 𝐸𝐷 ∪ 𝐸𝑅 )

❑ Binary variables 𝑦𝑒 for 𝑒 ∈ 𝐸𝐷 (𝑒 ∈ 𝐸𝐷 ∪ 𝐸𝑅), 

❑ One real variable 𝜇 representig the objective value.  

❑ Two types of constraints: feasibility and optimality

❑ Feasibility constraints correspond to the positive lengths directed cycles of 𝐺

❑ Optimality constraints correspond to longest path trees of 𝐺.
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Feasibility constraints 

σ𝑒∈𝐶𝐷 𝑦𝑒 ≤ 𝐶𝐷 − 1, for 𝐶𝐷 = 𝐸𝐷 ∩ 𝐶, 𝐶 ∈ Ω+

Let Ω+ be the set of positive directed cycles of 𝐺 = (𝑉, 𝐸 ∪ 𝐸𝐷)

Feasibility constraint

l q u v n
i

p w z
j

o s r g h m
k

𝒚𝒛𝒖𝒚𝒗𝒘

𝒚𝒓𝒍𝒚𝒒𝒔

𝒚𝒘𝒓

𝒚𝒏𝒉 𝒚𝒎𝒗

𝒚𝒈𝒑

𝐺 = (𝑉, 𝐸 ∪ 𝐸𝐷)
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Optimality constraints

𝜂 ≥ 𝑐 𝐻 σ𝑒∈𝐻𝐷 𝑦𝑒 − 𝐻𝐷 − 1 , for 𝐻𝐷 = 𝐻 ∩ 𝐸𝐷 , 𝐻 ∈ Π∗

𝒀+ = 𝑦 ∈ 𝑌: 

𝑒∈𝐶∩𝐸𝐷

𝑦𝑒 ≤ 𝐶𝐷 − 1, for 𝐶𝐷 = 𝐶 ∩ 𝐸𝐷, 𝐶 ∈ Ω+

Π∗ = 𝐻∗ 𝑦 𝑙𝑜𝑛𝑔𝑒𝑠𝑡 𝑝𝑎𝑡ℎ 𝑡𝑟𝑒𝑒 𝑖𝑛 𝐺 𝑦 : 𝑦 ∈ 𝑌+

Optimality cuts

𝜂 cost of solution

l q u v n
i

p w z
j

o s r g h m
k

𝒚𝒛𝒖𝒚𝒗𝒘

𝒚𝒓𝒍𝒚𝒒𝒔

𝒚𝒘𝒓

𝒚𝒏𝒉 𝒚𝒎𝒗

𝒚𝒈𝒑

𝐺 = (𝑉, 𝐸 ∪ 𝐸𝐷)
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The Path and Cycle formulation

𝜂 ≥ 𝑐 𝐻 σ
𝑒∈𝐻𝐷 𝑦𝑒 − 𝐻𝐷 − 1 , for 𝐻𝐷 = 𝐻 ∩ 𝐸𝐷, 𝐻 ∈ Π∗

min 𝜂

σ
𝑒∈𝐶𝐷 𝑦𝑒 ≤ CD − 1, for 𝐶𝐷 = 𝐸𝐷 ∩ 𝐶, 𝐶 ∈ Ω+,

𝜂 ∈ 𝑅, 𝑦 ∈ 0,1 𝐸𝐷

Optimality

Feasibility

❑ Many constraints: solve by delayed row generation

Problem infeasible → there exists a family ഥΩ ⊆ Ω+ of positive directed cycles 
𝐺 = (𝑉, 𝐸 ∪ 𝐸𝐷) such every 𝑦 ∈ 𝑌 «contains» at least a cycle in ഥΩ: 

For 𝑦 ∈ 𝑌, ∃𝐶𝑦 ∈ ഥΩ such that 𝑆 𝑦 ∩ 𝐶𝑦 = 𝐸𝐷 ∩ 𝐶𝑦



An example

15 min
f

c              d

j

Current time is 09:00
Train i must leave at 9:10
Train j must leave at 9:20

i

𝒅𝒊 𝒇𝒊
i

𝒅𝒋 𝒄𝒋

o

10

-10

20

0

0

15

15
-20j

Disjunctive graph representation𝐺 = 𝑉, 𝐸 ∪ 𝐸𝐷



Infeasibility proof

❑ Problem infeasible: every 𝑦 ∈ 𝑌

«contains» a cycle in ഥΩ = 𝐶1, 𝐶2 :

𝑆 𝑦 ∩ 𝐶𝑦 = 𝐸𝐷 ∩ 𝐶𝑦 , 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝐶𝑦 ∈ ഥΩ

ഥΩ = 𝐶1, 𝐶2

𝒅𝒊 𝒇𝒊
i

𝒅𝒋 𝒄𝒋

o

10

-10

20

0

0

15

15
-20j

𝐺 = 𝑉, 𝐸 ∪ 𝐸𝐷

𝐶2𝑙 𝐶2 = +5

𝒅𝒊 𝒇𝒊
i

𝒅𝒋 𝒄𝒋

o

0

10

-10

20

0

15

15
-20j

𝑖 wins

𝑙 𝐶1 = +25𝐶1

𝒅𝒊 𝒇𝒊
i

𝒅𝒋 𝒄𝒋

o

10

-10

20

0

0

15

15
-20j

𝑗 wins



A real-life pilot application



Greater Oslo Area Railway

❑ We can solve the Big-M or P&C formulations for very small instances 

❑ Greater Oslo Area Railway is a combination of one large station 

(Oslo S) and 10 municipal lines incident to Oslo S

❑ Almost 1000 trains daily 

❑ Need: more decomposition/reformulation



(Figure from Hansen and Pachl, Railway Timetable & Operations)

❑ One popular decomposition approach is

the so called Macroscopic/Microscopic

decomposition.

❑ A solution is found for the collapsed (macroscopic) representation

❑ The solution is then extended to the original re-expanded (microscopic) areas

Further decomposition 

❑ Subnetworks (as stations) are collapsed into "capacited" nodes.



43

Collapsing Greater Oslo Railway

❑ Macroscopic solution = arrival and departure time for each train in each station (timetable) 

❑ Can we extend the macro solution? = For each station, is the timetable feasible?  



Macroscopic representation of train routes

Station 1 Line 1 Station 2 Line 2 Line q-1 Station q

s1 l1 s2 t2 s3

Station 1 Line track 1

𝑡𝑠1
𝑖 𝑡𝑙1

𝑖

i

i

Microscopic representation

Macroscopic representation



Block structure of constraint matrix

❑ Constraint matrix with quasi-block structure

schedule on the line = macro network

schedule in stations = micro network(s)

𝐴𝑡𝐿 + 𝐵𝑡𝑇 + 0 ≤ 𝑏 −𝑀𝐿𝑦𝐿

0 + 𝐶𝑡𝑇 + 𝐷𝑡𝑆 ≤ 𝑑 −𝑀𝑆𝑦𝑆

𝑦𝐿 , 𝑦𝑆 binary,   𝑡𝐿 , 𝑡𝑇 , 𝑡𝑆real

min 𝑓(𝑡𝑇)

❑ Station constraints decompose

𝐶1, 𝐷1

𝐶2, 𝐷2

𝐶3, 𝐷3

⋯

,

𝑀1

𝑀2

𝑀3

⋯

❑ The objective function is only in 𝑡𝑇

❑ Station tracks and line tracks share only timetable variables 𝑡𝑇



Logic Benders' Reformulation 

SLAVE

MASTERschedule on the line

schedule in stations

𝐴𝑡𝐿 + 𝐵𝑡𝑇 ≤ 𝑏 −𝑀𝐿𝑦𝐿

0 + 𝐶𝑡𝑇 + 𝐷𝑡𝑆 ≤ 𝑑 −𝑀𝑆𝑦𝑆

𝑦𝐿 , 𝑦𝑆 binary,   𝑡𝐿 , 𝑡𝑇 , 𝑡𝑆real

min 𝑓(𝑡𝑇)

schedule on the line

logic Benders' cuts𝐶′𝑡𝑇 ≤ 𝑑′ −𝑀′𝑆𝑦𝑆

𝑦 = (𝑦𝐿 , 𝑦𝑆) binary,   𝑡𝐿 , 𝑡𝑇 real

min 𝑓(𝑡𝑇)

𝐴𝑡𝐿 + 𝐵𝑡𝑇 ≤ 𝑏 −𝑀𝐿𝑦𝐿

Reformulation



Solving the Train Scheduling Problem

Solve the current 
restricted master

Solve slave(s)

(𝑡𝐿, 𝑡𝑇 , 𝑦𝐿)

Feasible?

Add 𝐶𝑞𝑡𝑇 ≤ 𝑑𝑞 −𝑀𝑞𝑦𝑆

(𝑡𝐿, 𝑡𝑇 , 𝑡𝑆, 𝑦𝐿, 𝑦𝑆) optimal solution

Macro Problem
Line scheduling

Micro Problem(s)
Station scheduling

NO

Logic Benders' cuts

❑ Apply row generation

𝑡𝑇

(𝑡𝑇 , 𝑡𝑆, 𝑦𝑆)



The slave feasibility problem

❑ The slave problem decomposes in many independent feasibility problem

Station feasibility problem:

A. Given a station and arrival and departure times for all trains (a timetable), does a

feasible solution (in the station) exist?

B. If the problem is infeasible, what are the constraints to return to the master?

❑ We exploit the feasibility conditions of the P&C formulation



Individual station problem

❑ Station problem: given arrival times 𝑇𝐴
1, 𝑇𝐴

2, … , departure times 𝑇𝐷
1, 𝑇𝐷

2, … ,
does there exist a feasible solution?

o

𝑇𝐴
𝑖

−𝑇𝐴
𝑖

𝑇𝐴
𝑗

−𝑇𝐴
𝑗

𝑇𝐷
𝑗

−𝑇𝐷
𝑗

𝑮 = 𝑽, 𝑬 ∪ 𝑬𝑫 ∪ 𝐸𝑅 disjunctive graph representing problem instance

𝒀 = 𝒚𝟏, 𝒚𝟐, … set of (incident vectors of) edge selections 

Station problem infeasible:

𝐺 contains a family ഥΩ = {𝐶1, 𝐶2, … } of positive lengths
cycles such that every selection 𝑦 ∈ 𝑌 "contains" a cycle, i.e.

𝑆 𝑦 ∩ 𝐶𝑖 = 𝐸𝐷 ∩ 𝐶𝑖 , 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝐶𝑖 ∈ ഥΩ
Timetable edges



Combinatorial Benders' cuts

ഥΩ = 𝐶1, 𝐶2, … . Suppose 𝐶 ∈ ഥΩ contains a timetable edge.

Then 𝐶 contains the origin 𝑜 and exactly two timetable edges.

𝒍 𝑪 > 𝟎 → 𝑇𝐴
𝑖 − 𝑇𝐴

𝑗
+ 𝛿 > 0 → 𝑻𝑨

𝒋
− 𝑻𝑨

𝒊 < 𝜹
o

𝑻𝑨
𝒊

−𝑇𝐴
𝑖

𝑇𝐴
𝑗

−𝑻𝑨
𝒋

𝑇𝐷
𝑗

−𝑇𝐷
𝑗

𝜹

To prevent 𝑙 𝐶 > 0 a timetable must satisfy

𝑡𝐴
𝑗
− 𝑡𝐴

𝑖 ≥ 𝛿

𝐶 timetable cycle 



Combinatorial Benders' cuts
ഥΩ: every selection 𝑦 ∈ 𝑌 "contains" a cycle in ഥΩ

Ω𝑇 ⊆ ഥΩ subset of "timetable" cycles of ഥΩ

For 𝐶𝑖 ∈ Ω𝑇 , 𝑡𝑖
−, 𝑡𝑖

+ time variable associated with (the other
endpoint of) the non-positive edge and non-negative edge,

o

𝑻𝑨
𝒊

−𝑇𝐷
𝑖

𝑇𝐴
𝑗

−𝑻𝑨
𝒋

𝑇𝐷
𝑗

−𝑇𝐷
𝑗

𝜹𝟏

𝑪𝟏

𝑪𝟐

𝜹𝟐

Then, for any feasible timetable 𝑡, we must have:

𝑡1
− − 𝑡1

+ ≥ 𝛿1 OR 𝑡2
− − 𝑡2

+ ≥ 𝛿2 OR …

𝑡1
−

𝑡1
+

Again, a disjunction of time precedence constraints!
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The full reformulation

❑ Λ is the set of all families of timetable cycles (for all stations!)

❑ Disjunctions can be linearized by introducing binary variables and big 𝑀s.  

min 𝑓(𝑡)

𝑡𝑣 − 𝑡𝑢 ≥ 𝑙𝑢𝑣 𝑢, 𝑣 ∈ 𝐸

𝑡 ∈ 𝑅𝑉

}

𝐶𝑖∈Ω𝑘ڀ 𝑡𝑖
− − 𝑡𝑖

+ ≥ 𝛿𝑖 Ω𝑘 ∈ Λ

other line constraints … 
macro problem

logic Benders' cuts



Dispatching system in Oslo

❑ We developed a real-time scheduling system for 

dispatching trains in Oslo Greater Oslo Region
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