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Outline

Part 1: Introduction to SDF
1. Basic definitions: SDF, earliest schedule, repetition vector, consistency;

2. Precedence relations, useful tokens, normalisation;

3. Applications.

Part 2: two fundamental questions
1. Schedulability (or Liveness);

2. Maximum throughput.

Conclusion and perspectives



Basic definitions Precedence relations Applications Schedulability Maximum throughput Conclusion

Synchronous DataFlow Graphs (SDF)

A simple formalism introduced by Lee and Messerschmitt [LM] to model
communications for Digital Signal Processor :
• Nodes→ Actors (or tasks);
• Arcs→ buffers;
• Tokens→ data;
• Each arc a = (tA, tB) is tri-valued by 3 integers u(a) > 0, v(a) > 0 and M0(a) ≥ 0;
• Each firing of actor tA has duration `(tA).

tA 2 tB2 3

a = (tA, tB), u(a) = 2, v(a) = 3, M0(a) = 2
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Firing rules of actors

A buffer between two actors tA and tB

tA 2 tB2 3

• The buffer contains initially M0(a) tokens;
• At each firing of tA, 2 tokens are put in the buffer;
• tB needs 3 tokens to fire once.
• If the number of tokens is not sufficient to fire tB , tB has to wait for executions of tA.
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Example of SDF and earliest schedule
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Example of SDF and earliest schedule
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Repetition vector

A buffer between two actors tA and tB

tA 2 tB2 3

Balance equation: NA × 2 = NB × 3

After NA = 3 firings of tA and NB = 2 firings of tB , the number of tokens (in the buffer)
returns to it initial number M0(a).
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Repetition vector
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The minimum positive integer solution is N1 = 3, N2 = 2, N3 = 1 and N4 = 2.

Definition (Lee and Messerschmitt [LM])
An SDF G is consistent if a repetition vector N exists.

Definition (Weight of a circuit)
The weight of a circuit c of an SDF is W (c) = Πa∈c

u(a)
v(a)

.
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Authors usually consider consistent SDF. Why ?

t1
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W (c) = 1×2×4
5×1×2 = 4

5

Since W (c) < 1, the whole number of tokens in the circuit is (roughly) decreasing, and
a deadlock will occured !
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Authors usually consider consistent SDF. Why ?

Let c be a circuit of an SDF G.
• If W (c) < 1, the circuit consumes tokens and a deadlock will happen, even for

large values of the initial marking M0;
• If W (c) > 1, the circuit produces tokens and the markings tends to infinity (this in

not acceptable for real-life systems).

We only consider SDF G such that W (c) = 1 for any circuit c of G.

Definition
A graph G is unitary if any circuit c of G verifies W (c) = 1.

Theorem (Lee and Messerschmitt [LM])
An SDF G is unitary iff G is consistent.
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Checking the consistency of a SDF is polynomial

Each arc a = (tA, tB) of the SDF G is associated to the balance equation
NA × u(a) = NB × v(a).

Let us consider the valued graph H = (T ,E ,V ) builds as follows:
• Nodes of H are actors (or tasks);
• Each buffer a = (tA, tB) is associated to the arcs α = (tA, tB) and α′ = (tB , tA)

valued respectively by V (α) = log u(a)
v(a)

and V (α′) = −V (α);

• There exists a repetition vector N for the initial SDF G iff there exists a vector
δ ∈ R|T | such that, for each arc α = (tA, tB) ∈ E , δB − δA ≥ V (α).

The existence and the determination of δ can be computed by Bellman-Ford Algorithm
in time complexity O(|T | × |E |).
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A first algorithm for the existence of a feasible schedule

Theorem (Lee and Messerschmitt [LM])
Suppose that G is a consistent SDF. Then, there exists a feasible schedule iff each
task ti can be executed at least Ni times. Moreover, once each task ti is executed
exactly Ni times (if it is possible), the systems returns in its initial state, ı.e the current
marking of the buffers equals its initial value.

Checking the feasibility of a SDF requires to execute tasks at least Ni times.
The complexity of this algorithm is proportional to Σti∈T Ni , which is not polynomial

(and may be huge for real-life applications) !!

The complexity of the feasibility of a SDF is of unknown complexity
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Precedence relations associated to a SDF

Definition
An actor ti is non re-entrant if two executions of ti cannot overlap.

t1 1 t22 3

t2

t1 1 2 3 4 5 6 7

1 2 3 4 5

The couples of indexes (n1, n2) such that there exists a precedence relation are then
{(1 + 3k , 1 + 2k), k ∈ N} and {(3 + 3k , 2 + 2k), k ∈ N}.
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Precedence constraints associated to a SDF

Theorem (Munier [Mun93])
Let ti and tj be two re-entrant tasks. A FIFO queue a = (ti , tj ) ∈ A with initially M0(a)
tokens models a precedence relation between the ni th execution of ti and the nj th
execution of tj iff

u(a) > M0(a) + u(a) · ni − v(a) · nj ≥ max{u(a)− v(a), 0}.

For our example, u(a) = 2, v(a) = 3 and M0(a) = 1;

2 > 1 + 2n1 − 3n2 ≥ 0

1. If 1 + 2n1 − 3n2 = 0, then (n1, n2) = (1 + 3k , 1 + 2k), k ∈ N;

2. If 1 + 2n1 − 3n2 = 1, then (n1, n2) = (3 + 3k , 2 + 2k), k ∈ N.
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Useful tokens

t1 5 t23 6

There is always at least 2 tokens in the buffer. They thus can be removed without any
influence on the precedence constraints !

Definition
A useful initial marking is such that, for any arc a = (ti , tj ), M0(a) is a multiple of
gcd(u(a), v(a)).

Theorem (Marchetti et Munier [MMK09])
Useful initial markings are dominant. Moreover, the initial marking M0(a) of a may be
replaced by b M0(a)

gcd(u(a),v(a))
c × gcd(u(a), v(a)) without any influence on the precedence

constraints associated to a.

For our example, gcd(3, 6) = 3 and the equivalent useful initial marking is b 5
3 c × 3 = 3.

Only consistent SDF with useful initial markings are considered
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Scaling

tA M0(a) tBu(a) v(a)

tA M0(a)×∆ tBu(a)×∆ v(a)×∆

Theorem (Marchetti et Munier [MMK09])
Let us consider ∆ ∈ Q+ − {0} such that u(a)×∆ ∈ N, v(a)×∆ ∈ N and
M0(a)×∆ ∈ N. Then, the arc a = (ti , tj ) may be replaced by a′ = (ti , tj ) with
u(a′) = u(a)×∆, v(a′) = v(a)×∆ and M0(a′) = M0(a)×∆ without any influence
on the precedence constraints associated to a.
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Normalised circuit
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Z1 = 2 = u(a1) = v(a3)

Z2 = 3 = u(a3) = v(a2)

Z3 = 5 = u(a2) = v(a1)

The number of tokens is constant !
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Normalisation of a consistent graph
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Find αj , j ∈ {1, · · · , 6}

and Z1, i ∈ {1, · · · , 4}

Z1 = α1 = 2α3 = 2α4 = 2α5

Z2 = α2 = 3α3 = 3α4 = α6

Z3 = 3α1 = 2α2

Z4 = 3α5 = α6

The smallest solution is α1 = 2, α2 = 3, α3 = 1, α4 = 1, α5 = 2 , α6 = 3, Z1 = 2,
Z2 = 3, Z3 = 6 and Z4 = 3.
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Normalisation of a consistent graph

t1

t2

t3t4

2

6

6

3

2

33

2
3

2

3

3

N1 = 3, N2 = 2

N3 = 1, N4 = 2

We observe that Z1 × N1 = Z2 × N2 = Z3 × N3 = Z4 × N4 = 6.
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Normalisation of a consistent graph

Theorem (Marchetti et Munier [MMK09])
Let suppose that G is a consistent graph and N its smallest repetition vector. Let
consider the values M = lcm(Ni ) and for any task ti , Zi = M

NI
. Then, the normalized

SDF G′ built from G by setting, for any arc a = (ti , tj ), u′(a) = Zi , v ′(a) = Zj and
M′0(a) = M0(a)× Zi

u(a)
generates the same set of precedence constraints as G.

Every consistent graph can be normalized. The complexity of the algorithm is linear in
the number of arcs if the repetition vector is known.

Moreover, a normalized graph is clearly consistent.

Our studies are thus restricted to normalized SDF
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Applications modelled using a SDF

SDF can be considered directly to model streaming applications.

• tasks: repetitive treatments;
• arcs: FIFO buffers between two communication tasks;
• initial markings: tokens initially in buffers.

Some interesting questions:
• Is the SDF is consistent ? Schedulable (Liveness) ?
• What is its maximum throughput ?
• What is the influence of the size of the buffers on the throughput ?
• How can I execute the SDF on a fixed given multi-processors architecture with a

maximum throughput ?
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Examples of applications

Table: Benchmark coming from industry applications

Application Actors Buffers
∑

ti∈T Ni

BlackScholes 41 40 11895
JPEG2000 240 703 802971540
Echo 38 82 336024
Pdetect 58 76 3883200
H264 Encoder 665 3128 24094980

The time and space complexity of the algorithms for the previous questions depends
usually on the size

∑
ti∈T Ni of the repetition vector.

⇒ They cannot be considered for real-life applications such as JPEG2000.
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Embedded Real-time Reactive System

1. Reactive = permanently in interaction with its environment

2. Real-time = subject to (hard) timing-constraints

3. Embedded = automotive, avionics, cellular phone,. . .

Environment
Real-time con-

trol system

Sensor

Actuator
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Multi-periodic Tasks

1. T = {t1, . . . , tn} is a set of multi-periodic tasks following the Liu and Layland
model.

2. Each task ti ∈ T is associated to the triple (ri ,Di ,Ti )

• ri
def
= release date (the offset) of the first execution of ti ;

• Di
def
= the relative deadline of ti ;

• Ti
def
= the period of ti .

3. For any positive interger n
• 〈ti , n〉 def

= nth execution of ti ;
• S(ti , n)

def
= ri + (n − 1)× Ti is the release time of 〈ti , n〉;

• Di + (n − 1)× Ti is the deadline of 〈ti , n〉.
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Logical Execution Time paradigm

Definition (LET paradigm)
Let suppose that (ti , tj ) ∈ T 2 such that each execution of ti sends data to executions of
tj using a shared memory.

1. Each execution of ti writes the data at its periodic deadline,

2. each execution of tj reads the data at its periodic release date.

• Introduced by Kisrsch and Sokolova [KS12] and implemented in the time-triggered
programming language Giotto;
• Communications are fixed before the executions.
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Communications between executions of two adjacent tasks

Let consider e = (t1, t2) ∈ E , with (r1,D1,T1) = (0, 3, 4) and (r2,D2,T2) = (1, 2, 3).

t1
1 2 3 4

t2
1 2 3 4 5

0 1 4 7 8 10 12 13

There exists a dependence from 〈t1, 2〉 to 〈t2, 4〉 since 〈t1, 3〉 ends before the starting
time of 〈t2, 4〉.
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Characterization of the dependencies

Theorem (Munier and Tang [KT20] )
Let suppose that e = (ti , tj ) ∈ E, gcde

T = gcd(Ti ,Tj ) and Me = Tj +
⌈

ri−rj +Di
gcde

T

⌉
× gcde

T .

For any pair (νi , νj ) ∈ N− {0}2, there exists a dependency from 〈ti , νi 〉 to 〈tj , νj 〉 iff
Ti ≥ Me + Tiνi − Tjνj > 0.

For the previous example, e = (t1, t2), (r1,D1,T1) = (0, 3, 4), (r2,D2,T2) = (1, 2, 3).
Thus, gcde

T = 1, Me = 5 and we get

4 ≥ 5 + 4ν1 − 3ν2 > 0.
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Challenging questions associated to LET paradigm

An instance of the problem is given by a set of multi-periodic tasks T = {(ri ,Di ,Ti )}
and a directed graph G = (T ,E) modelling LET communications.

• The liveness is necessarliy true;
• The throughput is fixed;
• A first challenging question is the evaluation of the latency of the system, ie. the

maximum lenght between the execution of a task corresponding to a sensor (input
task) to the execution of a task corresponding to an actuator (output task);
• Another question is the execution of the system on a fixed multi-processor

architecture.
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Schedulability

Let G be a normalized strongly connected initially marked SDF. Is there an infinite
feasible schedule i.e. each task can be executed a non bounded number of times?

First solution: schedule the tasks as soon as possible until each task ti is executed at
least Ni times. Following Lee and Messerschmitt [LM], if such a schedule exists, G is
schedulable.

The number of tasks of this schedule is upper-bounded by Σti∈T Ni . The algorithm is
not polynomial !

Now, if G is not schedulable, then there exists a circuit c for which each arc a = (ti , tj )
has at most Zj − gcd(Zi ,Zj ) tokens, thus:

Theorem (Marchetti et Munier [MMK09])
Let G be a normalized strongly connected initially marked SDF. If, for any circuit c from
G, the inequality

∑
a=(ti ,tj )∈c M0(a) >

∑
a=(ti ,tj )∈c(Zj − gcd(Zi ,Zj )) holds, then G is

schedulable.

This condition can be checked in O(|T ||A|) using Bellman-Ford algorithm coupled with
a DFS.
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The condition is not necessary !

t1

t3 t2

6
a1

14

14a2
21

21

a3

6
M0(a1) = 0

M0(a2) = 0

M0(a3) = 21

1. N1 = 7, N2 = 3 and N3 = 2.

2. The sequence t3t1t1t1t2t3t1t1t1t1t2t2 can be repeated infinitely, the circuit is thus
schedulable.

3.
∑

tI∈c Zi −
∑

a∈c M0(a)−
∑

a=(ti ,tj )∈c gcd(Zi ,Zj ) = 41− 28− 12 > 0, the
sufficient condition does not hold !
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Problem Formulation

Let G a strongly connected normalizes SDF.

Definition
A schedule is a function s : T × N? → N where s(t , n) denotes the nth execution of t .
s is feasible is the numbers of tokens in any buffer remain non negative.

Definition
Let s be a feasible schedule. The throughput of t following s is λs(t) = limn→∞

n
s(t,n)

.

If G is consistent and strongly connected, ∀t ∈ T , λs(t)× Zt = λs is a constant.

How to evaluate efficiently the maximum throughput of G?
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Example of the earliest schedule
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t1
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1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 10 11

An K -Periodic schedule of (exact) maximum throughput λ? = 12
5 . The throughput of

the actors are λ(t1)? = 3
5 , λ?(t2) = 3

5 and λ?(t2) = 4
5 .
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K -Periodic schedules

Definition
A schedule s is K -periodic if for any task ti ∈ T , there exists the integers qi ≥ 0 and
Ki > 0 and a vector wi ∈ Q+n such that

∀q > qi , s(ti , q + Ki ) = s(ti , q) + wi

The throughput of ti is λs(ti ) = Ki
wi

while the throughput of the schedule equals

λs = Ki Zi
wi

.

1. If qi = 0 for any task ti , the schedule is strictly K -periodic;

2. If Ki = 1 for any task ti , the schedule is periodic;

3. The size of a K-periodic schedule is proportional to
∑

ti∈T Ki .

Theorem
Let G be a schedulable SDF. The earliest schedule is K-periodic, such that, for any task
ti ∈ T , Ni is a divisor of Ki . Moreover, there exists a strictly K-periodic schedule with,
∀ti ∈ T , Ki = Ni which throughput is maximum (equal to the throughput of the earliest
schedule).
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Two usual methods to evaluate the maximum throughput

1. Earliest Schedule: tasks are performed as soon as possible until a stabilization is
reached. A K-periodic steady state is always reached after a temporary phase.

2. Expansion: An equivalent SDF Gexp with unit weight (i.e Zt = 1, ∀t ∈ T ) may be
built by expanding each actor t Nt times. The throughput may then be
polynomially computed using classical critical circuits algorithms (Chrétienne
1982) or Max-Plus algebra (Cohen et al. 1987).

• Advantage→ the evaluation is exact (as the earliest schedule maximizes the
throughput of each actor);
• Drawback→ not polynomial, complexity proportional at least to

∑
t∈T Nt . Not

possible to use this method in an optimization process, nor for SDF with a large
number of actors.
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Periodic schedule: the simplest way to executes tasks
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t1 1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

A Periodic schedule of throughput λ̃ = 5
3 . λ̃(t1) = 5

12 , λ̃(t2) = 5
12 and λ̃(t3) = 5

9 .
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Characterization and computation of a Periodic Schedule with
maximum throughput

Theorem (Benabid et al. [BHMMK12])
Let a normalized SDF G. For any feasible periodic schedule s, there exists λ ∈ Q?+

such that for any couple of actors (ti , tj ) ∈ T 2,
Zi

wi
=

Zj

wj
= λ. Moreover, s is feasible if,

for any buffer a = (ti , tj ) ∈ B,

s(tj , 1)− s(ti , 1) ≥ `(ti )−
H(a)

λ
.

with gcda = gcd(Zi ,Zj ) and H(a) = M0(a) + gcda − Zj .

Computation of a strictly periodic schedule of maximum throughput can be expressed
by a linear program:

max λ subject to{
∀a = (ti , tj ) ∈ B, s(tj , 1)− S(ti , 1) ≥ `(ti )−

H(a)
λ

∀ti ∈ T , s(ti , 1) ≥ 0

The maximum value λ̃ is a lower bound of the maximum throughput of G.
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Benchmarks

Table: Evaluation of the normalized period 1
λ using an optimal periodic scheduling vs. an optimal

algorithm earliest schedule.

Application Periodic Sched. Optimal Sched.
BlackScholes 210 13ms 210 42ms

Echo 40816 10ms 40816 65ms
JPEG2000 66225 69ms N/A 6sec

Pdetect 1953 80ms 294 216ms
H264 Encoder 3906 544ms - >60h
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Conclusions and perspectives

• SDF is a simple model for repetitive tasks communicating through buffers;
• Constraints associated to arcs can be viewed as a cyclic scheduling problem with

some particular precedence constraints;
• Dominance properties and mathematical results can be considered to avoid

simulation to evaluate the SDF (Schedulability, maximum throughput);

Challenging questions:

• The complexity of the schedulability and the determination of the maximum
throughput are still of unknown complexity. There exists fixed parameter tractable
algorithms pamaterized by p =

∑
ti∈T Ni ;

• New strategies using partial expansions on critical circuits were tested by several
authors;
• Resource limitations (processors for tasks, memory for buffers) must be

considered to solve real-life applications.



Basic definitions Precedence relations Applications Schedulability Maximum throughput Conclusion

References I

Abir Benabid, Claire Hanen, Olivier Marchetti, and Alix Munier-Kordon, Periodic
Schedules for Bounded Timed Weighted Event Graphs, IEEE Transactions on
Automatic Control 57 (2012), no. 5, 1222 – 1232.

Christoph M. Kirsch and Ana Sokolova, The logical execution time paradigm,
Advances in Real-Time Systems (Samarjit Chakraborty and Jörg Eberspächer,
eds.), Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, pp. 103–120.

Alix Munier Kordon and Ning Tang, Evaluation of the age latency of a real-time
communicating system using the LET paradigm, 32nd Euromicro Conference on
Real-Time Systems, ECRTS 2020, July 7-10, 2020, Virtual Conference, 2020,
pp. 20:1–20:20.

Edward A. Lee and David G. Messerschmitt, Synchronous data flow, Proceeding
of the IEEE vol. 75, no. no. 9.

Olivier Marchetti and Alix Munier Kordon, Cyclic scheduling for the synthesis of
embedded systems, Introduction to scheduling, ch. 6, Chapman and Hall/CRC
Press, November 2009, ISBN: 978-1420072730.

Alix Munier, Régime asymptotique optimal d’un graphe d’événements temporisé
généralisé: application à un problème d’assemblage, RAIRO-Automatique
Productique Informatique Industrielle 27 (1993), no. 5, 487–513.


	Basic definitions
	Precedence relations
	Applications
	Schedulability
	Maximum throughput
	Conclusion

